## Free-space Polarization-selective Microcavity based on Chiral Metasurfaces

Summary Developing a new type of Fabry-Pérot cavity that allows improved control of the atoms’ emission into the cavity mode will result in enhancement of the efficiency and fidelity of quantum state transfer from photons to atoms and back. This in turn can be used to improve the performance of quantum networks and repeaters, as […]

September 19, 2019

## Novel Superconducting Qubits for Error-Corrected Processors

Summary In this project, we develop novel superconducting qubits for error-corrected processors to enable large-scale quantum computing. Our design efforts will specifically target error-corrected architectures through a variety of paths. Possible features will include built-in parity measurements and the use of bosonic codes, such as Fock state and Cat codes, as our starting focus. Early […]

June 26, 2019

## Quantum Simulations of Fundamental Interactions

Summary To address questions in modern physics such as “what is the structure of matter inside neutron stars?” we need better computational methods to evaluate the interplay of fundamental forces between elementary particles. To-date the response to such questions rests on numerical computer simulations that are inherently limited. In this project, we develop new theoretical […]

April 18, 2019

## Quantum Computational Resources in the Presence of Symmetry

Summary Fault-tolerance is essential to the performance of quantum technologies, but known schemes are extremely resource intensive. Thus, improving existing schemes or inventing new schemes is of central importance. This joint project is based on the realization that fault-tolerance schemes make use of symmetries in fundamental ways, and that studying the problem of fault tolerance […]

March 13, 2019

## Materials for Majorana-based Topological Qubits

Summary Topological qubits offer a novel pathway to scalable quantum computing by simultaneously allowing for ease of coupling between qubits and strong decoupling of qubits from noise and dissipation. The most promising direction explores the topologically induced protection of theoretically predicted exotic quasiparticles, the so-called Majorana Zero Modes or MZMs. To-date MZMs, which follow […]

January 28, 2019

## Composite Superconductors for Improved Quantum Coherence

Summary Conventional superconductors have trouble performing well in magnetic fields required for electron spin resonance (ESR) – based quantum information processing applications. We can, however, use proximity engineering to select desired properties from different materials and combine them for improved superconducting performance in magnetic fields — an improvement that would have strong implications for […]

December 12, 2018

## Topological Properties of Exciton-Polaritons in a Kagome Lattice as a Solid-state Quantum Simulator

Summary In this project, we build a solid-state quantum simulator for engineering a specific Hamiltonian. Quantum simulators are purpose-built devices with little to no need for error correction, thereby making this type of hardware less demanding than universal quantum computers. Our platform consists of exciton-polariton condensates in multiple quantum-wells sandwiched in a semiconductor Bragg […]

December 8, 2018

## Hybrid Quantum Materials towards Topological Quantum Computing

Summary Proximity engineered hybrid materials have shown promise for topological quantum information processing. This form of quantum computing provides a stable, error-tolerant approach for building scalable quantum information processors. Topological quantum computing relies on braiding non-Abelian particles, such as Majorana fermions, which do not exist in nature. One can however use materials engineering to […]

December 8, 2018

## Silicon Platform for Electron Spin Qubits

Summary Scaling solid-state quantum processors to a useful threshold while maintaining the requisite precision in quantum control remains a challenge. We propose a quantum metal-oxide-semiconductor (QMOS) architecture operating at cryogenic temperatures that is based on a network/node approach as a means to scalability. By working with QMOS, we benefit from the deep investments and […]

December 7, 2018

## Inverse Photoemission Spectroscopy of Quantum Materials

Summary Quantum materials that exhibit strong electron correlations lead to phenomena, such as superconductivity and topologically protected states, that are important for quantum computation, sensing, and other applications. For example, we may utilize symmetry protected topological states to make qubits that are robust against decoherence, while advances in high temperature superconductors may significantly reduce […]

September 20, 2018

## Implementing High-fidelity Quantum Gates in Multi-level Trapped Ions

Summary The scalability of quantum processors is limited by current error rates for single-qubit gates. By encoding more than a single bit of information within a single ion, multi-level “qudits” offer a promising method of increasing the information density within a quantum processor, and therefore minimizing the number of gates and associated error rates. […]

July 30, 2018

## Engineering and Characterizing Programmable Interaction Graphs in a Trapped Ion Quantum Simulator

Summary Quantum simulators have the potential to bring unprecedented capabilities in areas such as the discovery of new materials and drugs. Engineering precise and programmable interaction graphs between qubits or spins forms the backbone of simulator applications. The trapped ion system is unique in that the interaction graph between qubits can be programmed, in […]

July 24, 2018

## Quantum Benchmark launches True-Q™ software

Suite of solutions increases reach of quantum computing to solve real-world problems July 16, 2018 (Kitchener-Waterloo, Canada) – Quantum Benchmark (“the Company”), a software company focused on delivering quantum computing solutions, is pleased to announce the commercial launch of its True-Q™ software system. Errors are endemic in quantum computing. If error rates can be kept sufficiently […]

July 16, 2018

## Quantum Light Sources Based on Deterministic Photon Subtraction

Summary This project develops new sources of light that utilize quantum entanglement to enhance imaging resolution and detection. We aim to go beyond simple photon pairs and advance our understanding and control of new quantum states of light. Our approach uses deterministic single-photon subtraction (removing of a specific photon from a pulse of light) […]

July 13, 2018

## Ultrafast Dynamical Studies of Valley-Based Qubits

Summary As monolayers, transition metal dichalcogenides (TMDCs) – such as tungsten diselenide (WSe2) – become direct-bandgap semiconductors capable of emitting light. Compared to conventional direct-bandgap semiconductors, such as III-V semiconductors like GaAs, excitons (quasiparticles made of an electron hole bound with an electron) and single-layer TMDCs (SL-TMDCs) have much stronger binding energy. Excitons and […]

June 29, 2018

## Cryo-CMOS to Control and Operate 2D Fault-Tolerant Qubit Network

Summary Large-scale, fault-tolerant quantum computation requires precise and stable control of individual qubits. This project will use complementary metal-oxide-semiconductor (CMOS) technology to provide a cost-effective scalable platform for reliable and high-density control infrastructure for silicon spin qubits. We will use sub-micron CMOS technology to address device and circuit-level challenges and explore the integration of […]

June 14, 2018

## The role of frequency-shifting in quantum scalability

Friday, June 8, 2018 Researchers at IQC have developed new methods for preventing leakage errors due to cavity modes, an important obstacle in building a scalable quantum computer. The Digital Quantum Matter (DQM) lab, led by researcher Matteo Mariantoni, studied two frequency-shifting techniques to prevent a quantum system’s own hardware from interfering with qubit operation. […]

June 12, 2018

## Quantum State Tomography with Machine Learning

Summary An important challenge in building a quantum computer is quantifying the level of control obtained in the preparation of a quantum state. The state of a quantum device is characterized from experimental measurements, using a procedure known as tomography. Exact tomography requires a vast amount of computer resources, making it prohibitive for quantum […]

June 6, 2018

## Latest Project Posters for Quantum Dynamics of Cavity Interactions with Spin Ensembles

November 28, 2017

## Tunable Dirac points and high spin polarization in ferromagnetic-strain graphene superlattices

Abstract Spin-dependent energy bands and transport properties of ferromagnetic-strain graphene superlattices are studied. The high spin polarization appears at the Dirac points due to the presence of spin-dependent Dirac points in the energy band structure. A gap can be induced in the vicinity of Dirac points by strain and the width of the gap is […]

November 7, 2017