TQT Transformative Quantum Technologies logo
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    Photonic Quantum Processor

    Go Back Back

    More Topics

    computation entanglement integrated photonic circuit nanowire on-chip processor quantum dots

    Photonic quantum processors based on integrated quantum photonic circuits require entangled photon pairs to perform quantum computations. However, current state-of-the-art technologies utilize probabilistic entangled photon sources with limited pair-extraction efficiencies, negatively affecting the computation speed. This project aims to boost the speed of on-chip quantum operations by using bright, on-demand entangled photon sources with an extraction efficiency of more than two orders of magnitude higher than the existing state-of-the-art technology based on probabilistic photon sources. Our novel photon source will be developed by embedding quantum dots in tapered nanowire waveguides and surrounding them with a microcavity that accommodates entangled photons. This setup will produce bright, highly entangled photon pairs at a specified rate in a well-defined time interval, with high single-photon purity, pair extraction efficiency, photon indistinguishability, and entanglement fidelity. The tapered geometry of the nanowire allows for simple and efficient coupling of the produced photons into a low-loss optical fibre. This will enable the quantum dot sources to operate in a low-temperature cryostat, while the integrated photonic circuits operate at room temperature. Through fibre optic cables, the photons will be inserted into the integrated photonic circuit using custom-designed components such as grating couplers and edge couplers. This modular approach will be used to implement a vital protocol known as entanglement swapping, which is critical for large-scale quantum computing. Two core operations, a Bell-state measurement and quantum state tomography, will be performed by the integrated photonic circuits. The result of the procedure will be that two remote integrated photonic circuits will share entanglement. This novel quantum light source technology combined with integrated quantum photonic circuits will boost the speed, efficiency, and scalability of quantum operations compared to the current state-of-the-art system. Thus, this project will develop critical components of quantum photonic technologies that can pave the way for more secure communication, increase computation speed for complex problems, and enable a large-scale photonic quantum processor to be built in Canada.

    Figure 1. Illustration of the proposed experimental system for interfacing entangled photons emitted by the nanowire quantum dot sources with photonic integrated circuits for implementing quantum computing tasks on-chip. The emission from multiple entangled photon sources based on nanowire quantum dots that sit at low temperatures will be coupled to single-mode fibres. Using grating couplers, the entangled photons will be coupled into the photonic circuit for processing and then coupled out for detection.

     

    Principal Investigator (PI) or Team Coordinator

    Michael Reimer

    sidebar icon sidebar icon
    Group computation icon

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Related Content

    Harnessing the Promise of Quantum Materials for Future Electronic Devices

    Harnessing the Promise of Quantum Materials for Future Electronic Devices

    Summary   Two-dimensional (2D) quantum materials, such as graphene and molybdenum disulfide, have great potential for use in future flexible and wearable electronics applications. With traditional silicon-based electronics nearing their theoretical performance limits, nano-electronics made from 2D quantum materials offer breakthrough opportunities for energy-efficient, wearable ubiquitous computation. In this project, we will study integration of […]

    June 14, 2018

    PI: Young Ki Yoon

    Skip Tags 2d electrical & computer engineering + 2 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Harnessing the Promise of Quantum Materials for Future Electronic Devices
    Metasurfaces for high-efficiency parametric downconversion and complex quantum state generation

    Metasurfaces for high-efficiency parametric downconversion and complex quantum state generation

    Summary  Entangled photon sources are crucial for quantum computing, quantum sensing, and quantum communication. Of growing importance are sources relying on spontaneous parametric downconversion (SPDC). Unfortunately, these sources of entangled photons are often constrained by momentum conservation laws. To overcome this limitation and expand the possibility of quantum state engineering, we intend to use metasurfaces […]

    February 1, 2023

    PI: Zbig Wasilewski

    Skip Tags entangled photons quantum processing + 1 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Metasurfaces for high-efficiency parametric downconversion and complex quantum state generation

    Folk Understanding of Quantum Physics

    Summary  It is often said that quantum concepts are counterintuitive. However, quantum concepts may not be equally counterintuitive to people from all cultural backgrounds. As cultural psychologists have discovered, culture fundamentally shapes the way people make sense of the world. In particular, the last few decades of research have documented cultural differences in appreciation of […]

    March 24, 2021

    PI: Igor Grossmann

    Skip Tags culture dialecticism + 5 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Folk Understanding of Quantum Physics
    Quantum Light Sources Based on Deterministic Photon Subtraction
    TQT Sensing

    Quantum Light Sources Based on Deterministic Photon Subtraction

    Summary   This project develops new sources of light that utilize quantum entanglement to enhance imaging resolution and detection. We aim to go beyond simple photon pairs and advance our understanding and control of new quantum states of light. Our approach uses deterministic single-photon subtraction (removing of a specific photon from a pulse of light) […]

    July 13, 2018

    PI: Michal Bajcsy

    Skip Tags computation electrical & computer engineering + 2 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Quantum Light Sources Based on Deterministic Photon Subtraction

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum for Health Design Challenge
    • Quantum for Environment Design Challenge
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo