TQT Transformative Quantum Technologies logo
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    Folk Understanding of Quantum Physics

    Go Back Back

    More Topics

    culture dialecticism ethics folk epistemology knowledge mobilization new ideas seed

    Summary 

    It is often said that quantum concepts are counterintuitive. However, quantum concepts may not be equally counterintuitive to people from all cultural backgrounds. As cultural psychologists have discovered, culture fundamentally shapes the way people make sense of the world. In particular, the last few decades of research have documented cultural differences in appreciation of dialectical folk epistemology—i.e., recognition of uncertainty and the validity of positions that seem logically contradictory. Furthermore, learning quantum concepts has the potential to promote dialectical reasoning, leading to important social implications. Amongst other positive social outcomes, dialectical reasoning helps people resolve social conflicts, promotes interpersonal and intergroup harmony, and enables forecasting accuracy of social and geopolitical events.

    In this project, we seek to provide novel insights into how cultures will adapt to the growing presence of quantum technologies by exploring the links between folk dialecticism and perception/acceptance of quantum physics, drawing on cross-cultural research and psychological methods. If our hypothesized effects are obtained, they may suggest that the integration of quantum technologies into societies not only transforms the economy but also drives constructive cultural change.

    Principal Investigator (PI) or Team Coordinator

    Igor Grossmann

    sidebar icon

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Related Content

    Quantum Simulation of Strongly Coupled Field Theories
    TQT Computation

    Quantum Simulation of Strongly Coupled Field Theories

    Strongly-coupled field theories describe both fundamental and applied quantum problems.

    August 10, 2017

    PI: Chris Wilson

    Skip Tags computation electrical & computer engineering + 3 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Quantum Simulation of Strongly Coupled Field Theories
    Qubits and Quantum Effects in Biology

    Qubits and Quantum Effects in Biology

    It is unknown whether biological processes make direct use of quantum effects, as opposed to depending merely on the influence of quantum physics on chemical bonding and molecular structure.

    June 1, 2017

    PI: Michel Gingras, Zoya Leonenko

    Skip Tags biology nature + 3 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Qubits and Quantum Effects in Biology
    Carbon Nanotube Monolayer Josephson Junction Superconducting Qubit
    TQT Computation

    Carbon Nanotube Monolayer Josephson Junction Superconducting Qubit

    Carbon nanotubes (CNTs) are a promising material for use in Josephson-Junctions (JJs) given their unique properties, such as high electrical conductivity, pristine surface, inherent nanoscale dimension, and silicon-compatible processing

    June 1, 2017

    PI: Na Young Kim

    Skip Tags carbon nanotubes computation + 4 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Carbon Nanotube Monolayer Josephson Junction Superconducting Qubit

    Advanced microwave electronics enabling quantum technologies

    Summary  Superconducting quantum computers require quantum-limited measurements at microwave frequencies in order to implement error correction. Conventionally, this is accomplished using near quantum-limited Josephson Parametric Amplifiers (JPAs). The JPAs require bulky ferrite-based circulators that prevent on-chip integration of the amplifiers with the processor and take up the majority of space and cooling power in the […]

    April 1, 2020

    PI: Raafat Mansour

    Skip Tags amplifier computation + 9 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Advanced microwave electronics enabling quantum technologies

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum for Health Design Challenge
    • Quantum for Environment Design Challenge
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo