TQT Transformative Quantum Technologies logo
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    Folk Understanding of Quantum Physics

    Go Back Back

    More Topics

    culture dialecticism ethics folk epistemology knowledge mobilization new ideas seed

    Summary 

    It is often said that quantum concepts are counterintuitive. However, quantum concepts may not be equally counterintuitive to people from all cultural backgrounds. As cultural psychologists have discovered, culture fundamentally shapes the way people make sense of the world. In particular, the last few decades of research have documented cultural differences in appreciation of dialectical folk epistemology—i.e., recognition of uncertainty and the validity of positions that seem logically contradictory. Furthermore, learning quantum concepts has the potential to promote dialectical reasoning, leading to important social implications. Amongst other positive social outcomes, dialectical reasoning helps people resolve social conflicts, promotes interpersonal and intergroup harmony, and enables forecasting accuracy of social and geopolitical events.

    In this project, we seek to provide novel insights into how cultures will adapt to the growing presence of quantum technologies by exploring the links between folk dialecticism and perception/acceptance of quantum physics, drawing on cross-cultural research and psychological methods. If our hypothesized effects are obtained, they may suggest that the integration of quantum technologies into societies not only transforms the economy but also drives constructive cultural change.

    Principal Investigator (PI) or Team Coordinator

    Igor Grossmann

    sidebar icon

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Related Content

    Novel High-Speed Receiver for Quantum Communication and Sensing
    TQT Communication

    Novel High-Speed Receiver for Quantum Communication and Sensing

    Summary  An essential aspect of a quantum channel is the detection and analysis of quantum signals in the form of photons. For most free-space applications, the photons are polarization encoded, e.g. by assigning the ‘0’ to horizontally polarized photons and ‘1’ to vertically polarized photons. However, where the geometric reference is not constant at all […]

    January 1, 2019

    PI: Thomas Jennewein

    Skip Tags communication detector + 11 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Novel High-Speed Receiver for Quantum Communication and Sensing
    Towards large area, resonant quantum tunneling diodes by continuous Langmuir transfer of exfoliated 2D materials
    TQT Communication

    Towards large area, resonant quantum tunneling diodes by continuous Langmuir transfer of exfoliated 2D materials

    Summary  Atomically thin 2D materials constitute promising building blocks for quantum devices due to their exotic, layer-dependent electronic properties. The ability to stack these materials in alternating layers enables heterostructures to be built in almost limitless combinations and over small enough length scales to observe quantum phenomena. So far though, practical implementation of devices based […]

    April 1, 2020

    PI: Michael Pope

    Skip Tags 2D chemical engineering + 11 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Towards large area, resonant quantum tunneling diodes by continuous Langmuir transfer of exfoliated 2D materials
    Quantum Information Processing with Molecular Lattices
    TQT Computation

    Quantum Information Processing with Molecular Lattices

    The aim of the work is to develop theoretical tools to simulate and predict the behaviour of a one-dimensional chain of trapped dipolar molecules and to study the nature of entanglement as a design resource.

    June 1, 2017

    PI: Pierre-Nicholas Roy

    Skip Tags chemistry computation + 2 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Quantum Information Processing with Molecular Lattices
    Two-Dimensional Quantum Materials and Heterostructures
    TQT Computation

    Two-Dimensional Quantum Materials and Heterostructures

    Two-dimensional (2D) layers just one atom thick can be stripped from certain materials, such as graphene.

    June 1, 2017

    PI: Adam Wei Tsen

    Skip Tags 2d chemistry + 5 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Two-Dimensional Quantum Materials and Heterostructures

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum for Health Design Challenge
    • Quantum for Environment Design Challenge
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo