Summary
It is unknown whether biological processes make direct use of quantum effects, as opposed to depending merely on the influence of quantum physics on chemical bonding and molecular structure. We are testing the hypothesis that entangled pairs of phosphorus-31 atoms may link the function of remotely located neurons within the vertebrate brain. Using a rat brain model and an array of instruments and techniques, we are exploring the possibility that dissociation of pyrophosphate molecules sends entangled 31P atoms into separate neurons with physiologic consequences. We are also investigating whether there are systematic differences in neuronal action potential when we subject the neuronal tissue to different isotopes of lithium. If we can show that remotely entangled atoms link the functions of separate neurons, this may provide insight into a range of biological mysteries, such as olfaction, magneto-navigation by the European Robin, and the actions of lithium in treating mood disorders.
Related Content

Molecular Scale Magnetic Resonance Imaging
Through its phenomenal ability to image soft tissues, magnetic resonance imaging (MRI) has revolutionized both clinical medicine and research biomedicine.
September 9, 2016

Chiral Quantum Antenna Based on Multilayer Metasurface
Summary Individual atoms can act as stationary qubits and thus serve as nodes in quantum computing networks or as memories for quantum repeaters. However, to successfully use qubits based on single atoms suspended in free space, photons emitted by a single atom need to be efficiently collected. Conventionally, this can be done with high […]
September 20, 2018

Mesoscopic systems as coherent control elements
Summary Mesoscopic systems provide a new tool for quantum systems design. In particular, they are enabling of robust quantum control. Here “mesoscopic system” refers to a connected network where each element, if studied alone, would be a quantum bit. The network is too big to be treated fully quantum mechanically. We do not have individual […]
September 1, 2016
Fabrication of Ultra Low Noise RF SQUID Amplifiers
A superconducting quantum interference device (SQUID) is an extremely sensitive magnetic field detector.
June 1, 2017