TQT Transformative Quantum Technologies logo
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    Extensible Technology for a Medium-Scale Superconducting Quantum Processor

    Go Back Back

    More Topics

    computation grand challenge

    Summary

     

    Superconducting quantum bits, or qubits, use circuits made from superconducting materials to harness quantum mechanical states. These devices contain many atoms, but can behave as simple, controllable qubits. We are building technologies for the control and measurement of superconducting qubits to enable the first demonstration of an extensible, medium-scale quantum processor. Our approach includes the development of multilayer architectures where qubit and wiring circuitry are fabricated on different chips that are bonded together by means of thermocompression bonding technologies. This will make it possible to address qubits on a two-dimensional lattice on the order of 100 qubits. Implementing a two-dimensional array of superconducting qubits will allow for the realization of quantum-error correction, a critical step on the way to a fully scalable architecture. Through this work we also hope to study the loss mechanisms that limit the coherence time of superconducting qubits.

     

    Figure 1. Two chips bonded with indium forming a tunnel for superconducting qubits (credit C.R.H. McRae and M. Mariantoni 2017).

    Principal Investigator (PI) or Team Coordinator

    Matteo Mariantoni

    sidebar icon sidebar icon
    Group computation icon

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Related Content

    Mesoscopic systems as coherent control elements
    TQT Computation

    Mesoscopic systems as coherent control elements

    Summary  Mesoscopic systems provide a new tool for quantum systems design. In particular, they are enabling of robust quantum control. Here “mesoscopic system” refers to a connected network where each element, if studied alone, would be a quantum bit. The network is too big to be treated fully quantum mechanically. We do not have individual […]

    September 1, 2016

    PI: David Cory

    Skip Tags chemistry computation + 5 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Mesoscopic systems as coherent control elements
    Scanning Tunneling Microscopy of Quantum Materials, Devices and Molecules

    Scanning Tunneling Microscopy of Quantum Materials, Devices and Molecules

    Summary   This project advances our ability to characterize and study novel quantum materials, quantum devices, and even individual molecules at the atomic level. By combining Non-Contact Atomic Force Microscopy (NC-AFM), Scanning Tunneling Microscopy (STM) and scanning gate methods, we correlate spatial information with transport properties and can locally manipulate charge, spin and structural states. […]

    January 28, 2019

    PI: Jonathan Baugh

    Skip Tags 0d 1d + 13 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Scanning Tunneling Microscopy of Quantum Materials, Devices and Molecules
    Inverse Photoemission Spectroscopy of Quantum Materials
    TQT Computation

    Inverse Photoemission Spectroscopy of Quantum Materials

    Summary   Quantum materials that exhibit strong electron correlations lead to phenomena, such as superconductivity and topologically protected states, that are important for quantum computation, sensing, and other applications. For example, we may utilize symmetry protected topological states to make qubits that are robust against decoherence, while advances in high temperature superconductors may significantly reduce […]

    September 20, 2018

    PI: David Hawthorn

    Skip Tags Angle resolved inverse photoemission spectroscopy ARPES + 8 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Inverse Photoemission Spectroscopy of Quantum Materials
    Hybrid Quantum Materials towards Topological Quantum Computing
    TQT Computation

    Hybrid Quantum Materials towards Topological Quantum Computing

    Summary   Proximity engineered hybrid materials have shown promise for topological quantum information processing. This form of quantum computing provides a stable, error-tolerant approach for building scalable quantum information processors. Topological quantum computing relies on braiding non-Abelian particles, such as Majorana fermions, which do not exist in nature. One can however use materials engineering to […]

    December 8, 2018

    PI: Guo-Xing Miao

    Skip Tags braiding computation + 8 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Hybrid Quantum Materials towards Topological Quantum Computing

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum for Health Design Challenge
    • Quantum for Environment Design Challenge
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo