## Summary

Proximity engineered hybrid materials have shown promise for topological quantum information processing. This form of quantum computing provides a stable, error-tolerant approach for building scalable quantum information processors. Topological quantum computing relies on braiding non-Abelian particles, such as Majorana fermions, which do not exist in nature. One can however use materials engineering to create these particles in topological insulators that are proximity coupled to superconductors and magnetic insulators. In this project we synthesize high quality topological insulators and superconductors, couple them together to form a clean interface (“strong proximity”), and use tunneling spectroscopy to identify the presence of Majorana fermions. Once we are able to move the Majorana particles in a controlled fashion, we then braid an array of them and extract topological quantum information. This will provide the first demonstration of non-Abelian statistics on topological insulators and the first realization of topological quantum computing.

## Related Content

## Qubits and Quantum Effects in Biology

It is unknown whether biological processes make direct use of quantum effects, as opposed to depending merely on the influence of quantum physics on chemical bonding and molecular structure.

June 1, 2017

## Topological Quantum Computing on Majorana Platform

Full-scale quantum computing will require the capability for error-tolerant quantum information processing.

January 11, 2017

## Entangled Photon Orbital Angular Momentum Arrays

Summary Arrays of orbital angular momentum (OAM) states of light are a new form of structured light so far relatively unexplored in quantum information science. Unlike spin angular momentum of light, which is related to light’s polarization and covers two dimensions, OAM states, sometimes described as ‘donut beams’ due to the shape of the field […]

September 19, 2019

## Towards large area, resonant quantum tunneling diodes by continuous Langmuir transfer of exfoliated 2D materials

Summary Atomically thin 2D materials constitute promising building blocks for quantum devices due to their exotic, layer-dependent electronic properties. The ability to stack these materials in alternating layers enables heterostructures to be built in almost limitless combinations and over small enough length scales to observe quantum phenomena. So far though, practical implementation of devices based […]

April 1, 2020