**Summary**

Full-scale quantum computing will require the capability for error-tolerant quantum information processing. Unlike the more familiar Dirac fermions, each of which has a corresponding antiparticle, a Majorana fermion serves as its own antiparticle. Majorana fermions are suitable for error-tolerant quantum information processing because they are governed by non-Abelian statistics and their quantum states are thus topologically protected against most local perturbations. Our strategy for generating Majorana fermions is to combine helical surface states of topological insulators with superconductors. Through combined electrical and magnetic gating, we are working toward a long-term capability to create and manipulate Majorana fermions over a scalable network.

## Related Content

## Quantum Sensing with Small Quantum Systems

Summary There are small quantum systems over which we have very good control and which have long lifetimes. Examples include the phosphorous (P) defect in silicon (Si) and the nitrogen vacancy (NV) defect in diamond. With P defect in Si, we focus on improving our understanding of the hyperpolarization mechanism to better enable engineering of […]

December 1, 2016

## Developing Tools for Quantum Characterization and Validation

Summary Coherence is essential for quantum computation; yet it introduces a unique sensitivity to any imperfections in hardware design, control systems, and the operating environment. Overcoming these sensitivities requires a hierarchy of strategies, ranging from optimization of the hardware architecture to software solutions including quantum error correction. Randomized Benchmarking Protocols are an important family of […]

October 3, 2017

## Plasmon Control of Quantum States in Semiconductor Nanocrystals

Summary Thanks to the light-induced collective oscillations of free charges at the boundary between a conducting material and a dielectric, known as surface plasmon resonance, metallic nanostructures can exhibit strong light absorption and scattering. The sensitivity of these resonances to the local environment and shape of the metallic structures allows them to be used, […]

March 21, 2018

## Implementing High-fidelity Quantum Gates in Multi-level Trapped Ions

Summary The scalability of quantum processors is limited by current error rates for single-qubit gates. By encoding more than a single bit of information within a single ion, multi-level “qudits” offer a promising method of increasing the information density within a quantum processor, and therefore minimizing the number of gates and associated error rates. […]

July 30, 2018