**Summary**

With David Cory and collaborators at the National Institute of Standards and Technology (NIST) we explore how to engineer beams of neutron or photons that carry entanglement. The degrees of freedom that can be entangled include spin (polarization), momentum, displacement, and angular momentum. These have potential applications ranging from studies of helical internal magnetic fields in matter to helical organization of biological tissue. There is also a wealth of potential applications related to using entanglement to measure controlled self-correlation of materials properties, including local periodicity.

## Related Content

## Hybrid Quantum Materials towards Topological Quantum Computing

Summary Proximity engineered hybrid materials have shown promise for topological quantum information processing. This form of quantum computing provides a stable, error-tolerant approach for building scalable quantum information processors. Topological quantum computing relies on braiding non-Abelian particles, such as Majorana fermions, which do not exist in nature. One can however use materials engineering to […]

December 8, 2018

## Quantum Simulation of Strongly Coupled Field Theories

Strongly-coupled field theories describe both fundamental and applied quantum problems.

August 10, 2017

## Molecular Scale Magnetic Resonance Imaging

Through its phenomenal ability to image soft tissues, magnetic resonance imaging (MRI) has revolutionized both clinical medicine and research biomedicine.

September 9, 2016

## Ultrafast Dynamical Studies of Valley-Based Qubits

Summary As monolayers, transition metal dichalcogenides (TMDCs) – such as tungsten diselenide (WSe2) – become direct-bandgap semiconductors capable of emitting light. Compared to conventional direct-bandgap semiconductors, such as III-V semiconductors like GaAs, excitons (quasiparticles made of an electron hole bound with an electron) and single-layer TMDCs (SL-TMDCs) have much stronger binding energy. Excitons and […]

June 29, 2018