TQT Transformative Quantum Technologies logo
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    Fabrication of Ultra Low Noise RF SQUID Amplifiers

    Go Back Back

    More Topics

    physics & astronomy seed fund sensing

    Summary

     

    A superconducting quantum interference device (SQUID) is an extremely sensitive magnetic field detector. Microstrip SQUIDs can amplify weak radio frequency (RF) signals, a capability that makes them attractive as a potential alternative to the cryogenic semiconductor-based RF amplifiers that are available commercially, but at a cost of approximately $6,000 each. The challenge of using microstrip SQUIDs has been that they are static sensitive and can be overwhelmed by external noise. By tweaking microstrip SQUID design to achieve the quantum noise limit, and by packaging the technology into a more practical configuration, our team is working to reduce the cost of the SQUID approach by an order of magnitude. We also are working toward a much higher performance amplifier, with voltage noise reduced ten fold.

    In the course of our work, we expect to fabricate “user-friendly” SQUIDs – packaging the RF filtering, RF-SQUID, and amplification together – such that a non-specialist could easily run the amplifier with the ease of running a conventional semiconductor amplifier. In addition to producing a practical, high-performance and economical amplifier, we believe that our work will facilitate multiple new quantum readout applications, as well as interesting fundamental physics.

    Principal Investigator (PI) or Team Coordinator

    Jan Kycia

    sidebar icon sidebar icon
    Group sensing icon

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Related Content

    Topological Quantum Computing on Majorana Platform
    TQT Computation

    Topological Quantum Computing on Majorana Platform

    Full-scale quantum computing will require the capability for error-tolerant quantum information processing. 

    January 11, 2017

    PI: Guo-Xing Miao

    Skip Tags computation electrical & computer engineering + 1 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Topological Quantum Computing on Majorana Platform
    Developing Tools for Quantum Characterization and Validation
    TQT Computation

    Developing Tools for Quantum Characterization and Validation

    Summary   Coherence is essential for quantum computation; yet it introduces a unique sensitivity to any imperfections in hardware design, control systems, and the operating environment. Overcoming these sensitivities requires a hierarchy of strategies, ranging from optimization of the hardware architecture to software solutions including quantum error correction. Randomized Benchmarking Protocols are an important family of […]

    October 3, 2017

    PI: Joseph Emerson

    Skip Tags applied math computation + 3 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Developing Tools for Quantum Characterization and Validation
    Scanning Tunneling Microscopy of Quantum Materials, Devices and Molecules

    Scanning Tunneling Microscopy of Quantum Materials, Devices and Molecules

    Summary   This project advances our ability to characterize and study novel quantum materials, quantum devices, and even individual molecules at the atomic level. By combining Non-Contact Atomic Force Microscopy (NC-AFM), Scanning Tunneling Microscopy (STM) and scanning gate methods, we correlate spatial information with transport properties and can locally manipulate charge, spin and structural states. […]

    January 28, 2019

    PI: Jonathan Baugh

    Skip Tags 0d 1d + 13 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Scanning Tunneling Microscopy of Quantum Materials, Devices and Molecules
    Visible wavelength external cavity diode lasers in photonic integrated circuits for atomic technologies

    Visible wavelength external cavity diode lasers in photonic integrated circuits for atomic technologies

    Atoms can be controlled by manipulating their internal states using agile, quiet and reliable laser sources. An external-cavity diode laser (ECDL) is a crucial enabling technology to realize such laser sources since it allows for the narrowing of the linewidth of a laser diode and precise tuning of the laser frequency. This project aims to […]

    April 19, 2023

    PI: Matthew Day

    Skip Tags diode laser + 2 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Visible wavelength external cavity diode lasers in photonic integrated circuits for atomic technologies

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum for Health Design Challenge
    • Quantum for Environment Design Challenge
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo