Summary
Coherence is essential for quantum computation; yet it introduces a unique sensitivity to any imperfections in hardware design, control systems, and the operating environment. Overcoming these sensitivities requires a hierarchy of strategies, ranging from optimization of the hardware architecture to software solutions including quantum error correction. Randomized Benchmarking Protocols are an important family of tools (developed mostly here in Waterloo) that have become widely adopted to characterize and optimize the performance of one- and two-qubit quantum gates. Moving beyond the current state-of-the-art, we are developing and applying protocols that can characterize, optimize, validate, and certify the overall performance of a many-qubit architecture. We are also working to develop the diagnostics that will guide the design of multi-qubit quantum processors, for example, by clarifying how the quality of quantum control scales with the number of qubits. Ultimately, we expect that this work will sharpen our understanding of the required resources for quantum computation to outperform classical systems.
Related Content

Topological Quantum Computing on Majorana Platform
Full-scale quantum computing will require the capability for error-tolerant quantum information processing.
January 11, 2017

Spin Generation and High-Frequency Detection via the Quantum Nonlinear Anomalous Hall Effect in Weyl Semimetals
In magnetic conductors, the passage of current yields an electric field in the transverse direction even without an external magnetic field – this is known as the anomalous Hall effect (AHE). This effect can act as a convenient probe of spin ordering, magnetic textures, spin-orbit coupling, and band topology in solids, and can be further […]
April 19, 2023

Free-space Polarization-selective Microcavity based on Chiral Metasurfaces
Summary Developing a new type of Fabry-Pérot cavity that allows improved control of the atoms’ emission into the cavity mode will result in enhancement of the efficiency and fidelity of quantum state transfer from photons to atoms and back. This in turn can be used to improve the performance of quantum networks and repeaters, as […]
September 19, 2019