Summary
Detecting heavy metals in water is essential to ensure clean drinking water and appropriate regulatory decisions following an accident (e.g., a spill) or an emergency. Traditionally, high-sensitivity detection of heavy metals requires bulky and costly (to purchase and operate) lab-based instruments. We propose developing a palm-sized, element-specific, highly-sensitive, battery-operated, smartphone-controlled system for on-site measurement to provide timely heavy metal concentration information. Two-dimensional quantum dots (2D-QDs) will be modified by adding molecular components specific to a heavy metal of interest; the interaction between the heavy metal and the chosen molecular component will result in visible fluorescence that can be measured. A high-sensitivity instrument will be developed around a battery-operated, portable microplasma, which will serve as a light source, and a battery-operated photo-detector. For measurement, modified 2D-QDs will be added to a contaminated water sample inside a cuvette placed in the instrument. When excited by the light emitted by the microplasma, the resultant fluorescence will indicate the presence and concentration of heavy metals in the water sample. Further, data acquisition electronics will be embedded in the instrument and a smartphone can be used to receive the digital data wirelessly. The development of this sensor can significantly improve the monitoring of heavy metals in waters in Canada and worldwide.
Figure 1. (Left) A concept diagram of the proposed instrumentation consisting of the light source, a cuvette with a water sample and a detector. (Right) The proposed fluorescence-measurement system will be palm-sized, battery operated and controlled by a smartphone.
Related Content

Molecular Scale Magnetic Resonance Imaging
Through its phenomenal ability to image soft tissues, magnetic resonance imaging (MRI) has revolutionized both clinical medicine and research biomedicine.
September 9, 2016

Reliably operating noisy quantum computers
Summary The overall goal of the project is to develop practical methods to be able to reliably run useful applications on near-term quantum computers. This requires identifying and overcoming the ubiquitous errors that currently limit quantum computing capabilities. Traditional methods of quantifying errors in quantum computers fail to predict how errors affect the output of […]
January 22, 2020

Quantum Information Processing with Molecular Lattices
The aim of the work is to develop theoretical tools to simulate and predict the behaviour of a one-dimensional chain of trapped dipolar molecules and to study the nature of entanglement as a design resource.
June 1, 2017

Harnessing the Promise of Quantum Materials for Future Electronic Devices
Summary Two-dimensional (2D) quantum materials, such as graphene and molybdenum disulfide, have great potential for use in future flexible and wearable electronics applications. With traditional silicon-based electronics nearing their theoretical performance limits, nano-electronics made from 2D quantum materials offer breakthrough opportunities for energy-efficient, wearable ubiquitous computation. In this project, we will study integration of […]
June 14, 2018