Summary
Two-dimensional (2D) layers just one atom thick can be stripped from certain materials, such as graphene. The individual layers from one or more of these materials can then be restacked to create cage-like quantum heterostructures, which possess novel quantum properties. Incorporating magnetism into such a structure at room temperature could enable direct control of electron spin polarization in the transistor geometry. We are working to combine 2D semiconductors and magnetic insulators as an early step toward creation of magnetic semiconductor heterostructures for spintronic devices. Along with proving the heterostructure concept, success in combining the two materials supports a subsequent goal, fabrication of a nanostructure consisting of a superconductor, semiconductor, and magnetic insulator. Achievement of these two goals will provide a fundamental building block for spintronics, address a vital materials challenge in the pathway to quantum computing, and potentially allow for integration of processing and storage technologies in a single device platform.

Figure 1. Magnetic van der Waals tunnel junction incorporating ultrathin chromium trihalides. (A) Schematic illustration of the device. (B) Normalizedtemperature-dependent dc resistance of CrX3(X=I, Br, and Cl) at constant current of 0.1 nA.Insetsshow schematics of the spin-dependent tunnel barrier forAFM and FM interlayer coupling. Red and blue arrows indicate spin orientation and are used throughout. Original illustration from PNAS Publications.
Related Content

Towards large area, resonant quantum tunneling diodes by continuous Langmuir transfer of exfoliated 2D materials
Summary Atomically thin 2D materials constitute promising building blocks for quantum devices due to their exotic, layer-dependent electronic properties. The ability to stack these materials in alternating layers enables heterostructures to be built in almost limitless combinations and over small enough length scales to observe quantum phenomena. So far though, practical implementation of devices based […]
April 1, 2020

Extensible Technology for a Medium-Scale Superconducting Quantum Processor
Summary Superconducting quantum bits, or qubits, use circuits made from superconducting materials to harness quantum mechanical states. These devices contain many atoms, but can behave as simple, controllable qubits. We are building technologies for the control and measurement of superconducting qubits to enable the first demonstration of an extensible, medium-scale quantum processor. Our approach […]
November 28, 2016

Topological Properties of Exciton-Polaritons in a Kagome Lattice as a Solid-state Quantum Simulator
Summary In this project, we build a solid-state quantum simulator for engineering a specific Hamiltonian. Quantum simulators are purpose-built devices with little to no need for error correction, thereby making this type of hardware less demanding than universal quantum computers. Our platform consists of exciton-polariton condensates in multiple quantum-wells sandwiched in a semiconductor Bragg […]
December 8, 2018
Implementing High-fidelity Quantum Gates in Multi-level Trapped Ions
Summary The scalability of quantum processors is limited by current error rates for single-qubit gates. By encoding more than a single bit of information within a single ion, multi-level “qudits” offer a promising method of increasing the information density within a quantum processor, and therefore minimizing the number of gates and associated error rates. […]
July 30, 2018