TQT Transformative Quantum Technologies logo
Login
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Login
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    Harnessing the Promise of Quantum Materials for Future Electronic Devices

    Go Back Back

    More Topics

    2d electrical & computer engineering quantum materials seed fund

    Summary

     

    Two-dimensional (2D) quantum materials, such as graphene and molybdenum disulfide, have great potential for use in future flexible and wearable electronics applications. With traditional silicon-based electronics nearing their theoretical performance limits, nano-electronics made from 2D quantum materials offer breakthrough opportunities for energy-efficient, wearable ubiquitous computation.

    In this project, we will study integration of 2D material electronic devices with ferroelectric (FE) layers to simultaneously achieve low-power and high-speed devices through material and design optimization. Using density functional theory (DFT) calculations, we will select optimal 2D materials for use in the active channels of transistors and develop models to describe the intricate physics of negative capacitance field-effect transistors (NC FETs) based on the FE-dielectric-2D material heterostructure. In the end, the project will develop a numerical simulation tool for 2D material NC FETs and verify our simulations through collaboration with experimental groups.

     

    Figure 1. (a) A schematic of a 2D negative capacitance FET and (b) its equivalent capacitance network in equilibrium (VD = 0 V).

    Principal Investigator (PI) or Team Coordinator

    Young Ki Yoon

    sidebar icon sidebar icon

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Related Content

    Quantum Light Sources Based on Deterministic Photon Subtraction
    TQT Sensing

    Quantum Light Sources Based on Deterministic Photon Subtraction

    Summary   This project develops new sources of light that utilize quantum entanglement to enhance imaging resolution and detection. We aim to go beyond simple photon pairs and advance our understanding and control of new quantum states of light. Our approach uses deterministic single-photon subtraction (removing of a specific photon from a pulse of light) […]

    July 13, 2018

    PI: Michal Bajcsy

    Skip Tags computation electrical & computer engineering + 2 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Quantum Light Sources Based on Deterministic Photon Subtraction

    Implementing High-fidelity Quantum Gates in Multi-level Trapped Ions

    Summary   The scalability of quantum processors is limited by current error rates for single-qubit gates. By encoding more than a single bit of information within a single ion, multi-level “qudits” offer a promising method of increasing the information density within a quantum processor, and therefore minimizing the number of gates and associated error rates. […]

    July 30, 2018

    PI: Crystal Senko

    Skip Tags benchmarking computation + 7 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Implementing High-fidelity Quantum Gates in Multi-level Trapped Ions
    Cryo-CMOS to Control and Operate 2D Fault-Tolerant Qubit Network
    TQT Computation

    Cryo-CMOS to Control and Operate 2D Fault-Tolerant Qubit Network

    Summary   Large-scale, fault-tolerant quantum computation requires precise and stable control of individual qubits. This project will use complementary metal-oxide-semiconductor (CMOS) technology to provide a cost-effective scalable platform for reliable and high-density control infrastructure for silicon spin qubits. We will use sub-micron CMOS technology to address device and circuit-level challenges and explore the integration of […]

    June 14, 2018

    PI: Lan Wei

    Skip Tags CMOS computation + 3 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Cryo-CMOS to Control and Operate 2D Fault-Tolerant Qubit Network
    Inverse Photoemission Spectroscopy of Quantum Materials
    TQT Computation

    Inverse Photoemission Spectroscopy of Quantum Materials

    Summary   Quantum materials that exhibit strong electron correlations lead to phenomena, such as superconductivity and topologically protected states, that are important for quantum computation, sensing, and other applications. For example, we may utilize symmetry protected topological states to make qubits that are robust against decoherence, while advances in high temperature superconductors may significantly reduce […]

    September 20, 2018

    PI: David Hawthorn

    Skip Tags Angle resolved inverse photoemission spectroscopy ARPES + 8 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Inverse Photoemission Spectroscopy of Quantum Materials

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo