Summary
The library of two-dimensional (2D) materials has recently grown to include topological insulators and semimetals. Their incorporation in special device geometries may lead to novel quantum electronics with enhanced functionalities. Weyl semimetals, in particular, offer the most robust form of topological protection. Recent results from our group indicate that Weyl nodes should be observable at room temperature in thin molybdenum ditelluride (MoTe2) and are furthermore tunable by changing dimensionality. Weyl nodes correspond to points of bulk band degeneracy and are separated in momentum space. In this joint project with Dr. Andrea Damascelli’s group at the University of British Columbia (UBC), we utilize micro-angle-resolved photoemission spectroscopy (micro-ARPES) to image in momentum space the Weyl nodes and surface arcs of MoTe2 and further investigate changes induced by lower dimensionality. Once the Weyl nodes are mapped, we perform transport measurements and utilize scanning photocurrent microscopy to image novel photogalvanic effects induced by the Weyl points in real space. We expect this project will pave the way for future materials exploration and device development that exploits the unique properties of 2D materials through combined ARPES and nanoscale device transport studies.

Figure 1. Sample device geometry. MoTe2 flakes of various thicknesses are transferred on prepatterned gold electrodes deposited on a hexagonal boron nitride (BN)/graphite (Gr) heterostructure and capped with single-layer hBN. The bottom layers provide an ultra-flat substrate for the MoTe2.
Related Content

Quantum Dynamics of Cavity Interactions with Spin Ensembles
Summary High quality factor cavities can be powerful control elements for ensembles of spins, enabling unitary control as well as on demand cooling. They can also be used to couple two otherwise non-interacting ensembles. The goal of the project is to explore the physics and engineering of such systems both theoretically and experimentally. The laboratory contains a […]
September 7, 2016

Topological Properties of Exciton-Polaritons in a Kagome Lattice as a Solid-state Quantum Simulator
Summary In this project, we build a solid-state quantum simulator for engineering a specific Hamiltonian. Quantum simulators are purpose-built devices with little to no need for error correction, thereby making this type of hardware less demanding than universal quantum computers. Our platform consists of exciton-polariton condensates in multiple quantum-wells sandwiched in a semiconductor Bragg […]
December 8, 2018

Carbon Nanotube Monolayer Josephson Junction Superconducting Qubit
Carbon nanotubes (CNTs) are a promising material for use in Josephson-Junctions (JJs) given their unique properties, such as high electrical conductivity, pristine surface, inherent nanoscale dimension, and silicon-compatible processing
June 1, 2017

Novel High-Speed Receiver for Quantum Communication and Sensing
Summary An essential aspect of a quantum channel is the detection and analysis of quantum signals in the form of photons. For most free-space applications, the photons are polarization encoded, e.g. by assigning the ‘0’ to horizontally polarized photons and ‘1’ to vertically polarized photons. However, where the geometric reference is not constant at all […]
January 1, 2019