As the demand for digital services grows, so does the need for data centres and transmission networks. Unfortunately, these data systems consume vast amounts of energy, resulting in nearly 1% of all energy-related greenhouse gas emissions. This project aims to invent novel quantum devices for highly energy-efficient computing that may help reduce the global digital carbon footprint. Tellurium (Te)-based devices will be gated through antiferroelectric (AFE) stacks to form a multi-valued-logic quantum device. A tapered Te region will be used as the active material of the developed transistors. This proposed architecture can rely on quantum tunnelling effects to minimize energy consumption per transition while circumventing the limitations of the classical field-effect transistors. The AFE layer can transform binary logic switches into ternary logic devices, allowing fewer transistors to perform the same function and reduce overall power consumption. The researchers will first develop, calibrate, and validate an AFE model and use the model to investigate the characteristics of AFE capacitors. The electronic states and materials parameters of Te will also be explored. Next, a new simulation tool will be developed to study the physics related to the proposed devices and the optimal device structure will be proposed for a prototype. The modelling results will be further validated and calibrated against experiments, allowing the device to be updated iteratively for further optimization. The quantum simulation tool and prototype ternary devices will not only help build ultra-low-power electronics for sustainable computing but will also elevate our knowledge in material science, quantum physics, and electronics.
Figure 1. (a) Tellurium crystal structure with unique helical chains for the active channel material of the device. (b) A double hysteresis loop in the polarization vs. electric field characteristic of antiferroelectric thin film for multi-valued-logic operation.
Related Content
Folk Understanding of Quantum Physics
Summary It is often said that quantum concepts are counterintuitive. However, quantum concepts may not be equally counterintuitive to people from all cultural backgrounds. As cultural psychologists have discovered, culture fundamentally shapes the way people make sense of the world. In particular, the last few decades of research have documented cultural differences in appreciation of […]
March 24, 2021

Applications of Neutron Interferometry and Structured Neutron Beams
Summary Neutrons are a powerful probe of matter and physics due to their Angstrom size wavelengths, electric neutrality and relatively large mass. In this project, we develop quantum sensors that exploit these attributes to increases the precision of measurements of fundamental forces and materials structure. With David Cory, Alexander Cronin of the University of Arizona, […]
July 31, 2018

Tuning Spin-Exchange Interactions in Low-Dimensional Metal Halide Perovskites: A New Class of Semiconductor Quantum Materials
Summary Leakage current in electronic components is one of the limiting factors for the performance of conventional computers which use charges and currents as physical information carriers. Spintronics offers an alternative by using electron spin for information transfer, processing and storage, enabling the design of non-volatile computer memory and more energy-efficient electronic devices. In this […]
October 1, 2019
QuantumIon: an open-access quantum computing platform
Summary Trapped ions are one of the most advanced technologies for quantum computing, offering multi-qubit control in a universal quantum computing architecture and the ability to perform calculations with unprecedented precision. In this project we construct a shared trapped-ion quantum computing platform, QuantumIon, that will enable a broader and interdisciplinary scientific community to access an […]
September 9, 2019