As the demand for digital services grows, so does the need for data centres and transmission networks. Unfortunately, these data systems consume vast amounts of energy, resulting in nearly 1% of all energy-related greenhouse gas emissions. This project aims to invent novel quantum devices for highly energy-efficient computing that may help reduce the global digital carbon footprint. Tellurium (Te)-based devices will be gated through antiferroelectric (AFE) stacks to form a multi-valued-logic quantum device. A tapered Te region will be used as the active material of the developed transistors. This proposed architecture can rely on quantum tunnelling effects to minimize energy consumption per transition while circumventing the limitations of the classical field-effect transistors. The AFE layer can transform binary logic switches into ternary logic devices, allowing fewer transistors to perform the same function and reduce overall power consumption. The researchers will first develop, calibrate, and validate an AFE model and use the model to investigate the characteristics of AFE capacitors. The electronic states and materials parameters of Te will also be explored. Next, a new simulation tool will be developed to study the physics related to the proposed devices and the optimal device structure will be proposed for a prototype. The modelling results will be further validated and calibrated against experiments, allowing the device to be updated iteratively for further optimization. The quantum simulation tool and prototype ternary devices will not only help build ultra-low-power electronics for sustainable computing but will also elevate our knowledge in material science, quantum physics, and electronics.
Figure 1. (a) Tellurium crystal structure with unique helical chains for the active channel material of the device. (b) A double hysteresis loop in the polarization vs. electric field characteristic of antiferroelectric thin film for multi-valued-logic operation.
Related Content

Inverse Photoemission Spectroscopy of Quantum Materials
Summary Quantum materials that exhibit strong electron correlations lead to phenomena, such as superconductivity and topologically protected states, that are important for quantum computation, sensing, and other applications. For example, we may utilize symmetry protected topological states to make qubits that are robust against decoherence, while advances in high temperature superconductors may significantly reduce […]
September 20, 2018

Identifying the Potential of Quantum Dots to Detect and Disrupt Tau Protein Aggregation in Alzheimer’s Disease
Specific tests for Alzheimer’s disease (AD) diagnosis are currently unavailable, despite AD being the leading cause of dementia. One hallmark of AD progression is the aggregation of tau proteins into paired helical filaments and neurofibrillary tangles, which is accelerated by the hyperphosphorylation of Tau proteins. However, the mechanism by which the hyperphosphorylated tau accelerates protein […]
March 27, 2023

Quantum Sensing with Small Quantum Systems
Summary There are small quantum systems over which we have very good control and which have long lifetimes. Examples include the phosphorous (P) defect in silicon (Si) and the nitrogen vacancy (NV) defect in diamond. With P defect in Si, we focus on improving our understanding of the hyperpolarization mechanism to better enable engineering of […]
December 1, 2016

Hybrid Quantum Repeater based on Atomic Quantum Memories and Telecom Wavelength Entangled Photon-Pairs Generated from Semiconductor Nanowires
Summary Losses in physical channels, such as optical fibres, limit existing quantum communication systems to modest distance ranges. Since amplification of quantum signals is fundamentally not possible, we look to extend the range and functionality of these quantum channels by adding quantum memory nodes that can daisy-chain multiple lengths of quantum channels through entanglement […]
October 29, 2018