TQT Transformative Quantum Technologies logo
Login
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Login
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    Repurposing potential drug candidates for the treatment of COVID-19

    Go Back Back

    More Topics

    biology chemistry COVID-19 detection drug grand challenge new ideas protease quantum dots SARS-CoV-2 structure therapeutic treatment

    Summary

    The main protease (Mpro) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus disease (COVID-19), has emerged as a promising drug target. The scientific community has produced a large number of crystallographic structures of the protease, which mediates viral replication and transcription. These structures report several fragments with varied chemotypes binding to different sites in Mpro. The main challenge at this stage is to effectively corroborate these valuable structural insights and expedite the search for any known drugs or natural products with properties similar to those fragments such that they can be rapidly translated for clinical testing against SARS-CoV-2. In this project, we build an artificial intelligence-based model using the available structural data of fragment-bound SARS-CoV-2 Mprocomplexes.Leveraging known drug-target interactions, our goal is to produce a machine learning algorithm capable of predicting potential drugs that can be repurposed for the treatment of COVID-19. We explore the potentials of small molecules, including drugs, natural products, and quantum dots to identify promising structures for inhibiting and/or detecting the SARS-CoV2 virus. Our results are expected to provide useful insights into the readily available therapeutic resources and help in the fight against the COVID-19 pandemic.

    Figure 1. The X-ray crystal structures of the recently reported fragment-bound SARS-CoV-2 Mpro complexes from Protein Data Bank. The structure of Mpro is shown as a blue surface, and all the small fragments are represented as stick representation.

    Principal Investigator (PI) or Team Coordinator

    Subha Kalyaanamoorthy

    sidebar icon sidebar icon sidebar icon

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Related Content

    Folk Understanding of Quantum Physics

    Summary  It is often said that quantum concepts are counterintuitive. However, quantum concepts may not be equally counterintuitive to people from all cultural backgrounds. As cultural psychologists have discovered, culture fundamentally shapes the way people make sense of the world. In particular, the last few decades of research have documented cultural differences in appreciation of […]

    March 24, 2021

    PI: Igor Grossmann

    Skip Tags culture dialecticism + 5 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Folk Understanding of Quantum Physics
    Reliably operating noisy quantum computers
    TQT Computation

    Reliably operating noisy quantum computers

    Summary The overall goal of the project is to develop practical methods to be able to reliably run useful applications on near-term quantum computers. This requires identifying and overcoming the ubiquitous errors that currently limit quantum computing capabilities. Traditional methods of quantifying errors in quantum computers fail to predict how errors affect the output of […]

    January 22, 2020

    PI: Joel Wallman

    Skip Tags accuracy applied mathematics + 8 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Reliably operating noisy quantum computers
    Carbon Nanotube Monolayer Josephson Junction Superconducting Qubit
    TQT Computation

    Carbon Nanotube Monolayer Josephson Junction Superconducting Qubit

    Carbon nanotubes (CNTs) are a promising material for use in Josephson-Junctions (JJs) given their unique properties, such as high electrical conductivity, pristine surface, inherent nanoscale dimension, and silicon-compatible processing

    June 1, 2017

    PI: Na Young Kim

    Skip Tags carbon nanotubes computation + 4 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Carbon Nanotube Monolayer Josephson Junction Superconducting Qubit
    Composite Superconductors for Improved Quantum Coherence
    TQT Computation

    Composite Superconductors for Improved Quantum Coherence

    Summary   Conventional superconductors have trouble performing well in magnetic fields required for electron spin resonance (ESR) – based quantum information processing applications. We can, however, use proximity engineering to select desired properties from different materials and combine them for improved superconducting performance in magnetic fields — an improvement that would have strong implications for […]

    December 12, 2018

    PI: Guo-Xing Miao

    Skip Tags computation ESR + 6 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Composite Superconductors for Improved Quantum Coherence

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum for Health Design Challenge
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo