**Summary**

Classical game theory – conducted at the interface between economics and computer science – has found applications in topics ranging from networking and security to online markets. Despite over 20 years of research into connections between game theory and quantum information, we have yet to see any significant implications of quantum information when applied to game theory. This project brings a reformulation of quantum game theory as a mathematical theory of strategic interactions involving quantum information among rational decision-making agents. We focus on computational complexity aspects as a means to redevelop quantum game theory and tackle four challenge areas that include non-interactive games, interactive games, correlated (and entangled) equilibria, and cooperative quantum strategies. This reformulation of quantum game theory holds promise for enabling new mathematical techniques in quantum information science (e.g., communication protocols) and new applications of quantum devices. Finally, as we consider the fundamental aspects of quantum games, we are bound to discover interesting new mathematical structures that may find uses in other areas of quantum information science.

## Related Content

## Implementing High-fidelity Quantum Gates in Multi-level Trapped Ions

Summary The scalability of quantum processors is limited by current error rates for single-qubit gates. By encoding more than a single bit of information within a single ion, multi-level “qudits” offer a promising method of increasing the information density within a quantum processor, and therefore minimizing the number of gates and associated error rates. […]

July 30, 2018

## Functionalized Nanodiamonds for Sensing Biochemical Processes

Summary Chemotherapy is limited by the failure to clinically monitor the efficacy of the treatment in real-time, which results in suboptimal chemotherapy being given for a prolonged period. Predicting the outcome of chemotherapy immediately after drug administration can increase diagnostic accuracy, efficacy outcomes, and successful treatment. Quantum nanodiamond sensors can be used as optical sensors […]

August 31, 2022

## Hybrid Quantum Materials towards Topological Quantum Computing

Summary Proximity engineered hybrid materials have shown promise for topological quantum information processing. This form of quantum computing provides a stable, error-tolerant approach for building scalable quantum information processors. Topological quantum computing relies on braiding non-Abelian particles, such as Majorana fermions, which do not exist in nature. One can however use materials engineering to […]

December 8, 2018

## Hybrid Quantum Repeater based on Atomic Quantum Memories and Telecom Wavelength Entangled Photon-Pairs Generated from Semiconductor Nanowires

Summary Losses in physical channels, such as optical fibres, limit existing quantum communication systems to modest distance ranges. Since amplification of quantum signals is fundamentally not possible, we look to extend the range and functionality of these quantum channels by adding quantum memory nodes that can daisy-chain multiple lengths of quantum channels through entanglement […]

October 29, 2018