Summary
Magnetoelectric multiferroics are materials that exhibit correlated ferroelectric and ferromagnetic properties (i.e., a magnetoelectric effect). The resulting ability of these materials to simultaneously store data in electric polarization and magnetic moment could increase data storage density and data processing speed while reducing energy consumption. This project aims to design and fabricate new composite multiferroic nanostructures with enhanced interactions between the electric polarization and spin by coupling ferroelectric and ferromagnetic components (preliminary examples of such nanostructures can be seen in the figure). First, ferromagnetic components with variable compositions and ferroelectric components with different nanostructure sizes and morphologies will be synthesized and characterized. The optimized ferroelectric and ferromagnetic components will be coupled to form the composite multiferroics, which will be probed at ensemble and single nanostructure levels to investigate the magneto-electrical properties. Additional tests will be run to optimize the fabrication method and to propose improved materials, configurations, and compositions for multiferroics systems that demonstrate enhanced magnetoelectric coupling in quantum communication applications. The results of this work can inform future designs of multifunctional nanomaterials for improved information processing and memory storage technologies.

(a) Magnetic hysteresis loops of multiferroic nanocomposite at 5 K and 300 K. Inset: Transmission electron microscopy (TEM) image of ferromagnetic cobalt ferrite nanocubes used to prepare the composite. (b) TEM image of composite core-shell multiferroic nanowire and the corresponding elemental line scan. (c) High resolution TEM image of an interface between ferroelectric and ferromagnetic components.(What is CFO and PTO?)
Related Content

Quantum Sensing with Small Quantum Systems
Summary There are small quantum systems over which we have very good control and which have long lifetimes. Examples include the phosphorous (P) defect in silicon (Si) and the nitrogen vacancy (NV) defect in diamond. With P defect in Si, we focus on improving our understanding of the hyperpolarization mechanism to better enable engineering of […]
December 1, 2016

Engineering and Characterizing Programmable Interaction Graphs in a Trapped Ion Quantum Simulator
Summary Quantum simulators have the potential to bring unprecedented capabilities in areas such as the discovery of new materials and drugs. Engineering precise and programmable interaction graphs between qubits or spins forms the backbone of simulator applications. The trapped ion system is unique in that the interaction graph between qubits can be programmed, in […]
July 24, 2018