Summary
Magnetoelectric multiferroics are materials that exhibit correlated ferroelectric and ferromagnetic properties (i.e., a magnetoelectric effect). The resulting ability of these materials to simultaneously store data in electric polarization and magnetic moment could increase data storage density and data processing speed while reducing energy consumption. This project aims to design and fabricate new composite multiferroic nanostructures with enhanced interactions between the electric polarization and spin by coupling ferroelectric and ferromagnetic components (preliminary examples of such nanostructures can be seen in the figure). First, ferromagnetic components with variable compositions and ferroelectric components with different nanostructure sizes and morphologies will be synthesized and characterized. The optimized ferroelectric and ferromagnetic components will be coupled to form the composite multiferroics, which will be probed at ensemble and single nanostructure levels to investigate the magneto-electrical properties. Additional tests will be run to optimize the fabrication method and to propose improved materials, configurations, and compositions for multiferroics systems that demonstrate enhanced magnetoelectric coupling in quantum communication applications. The results of this work can inform future designs of multifunctional nanomaterials for improved information processing and memory storage technologies.
Related Content
Quantum Simulation of Strongly Coupled Field Theories
Strongly-coupled field theories describe both fundamental and applied quantum problems.
August 10, 2017
Development of Terahertz Polariton Lasers
Theoretical and experimental results show that the polariton lasing mechanism is a promising basis for a compact, efficient source of terahertz radiation.
July 1, 2017
Quantum Light Sources Based on Deterministic Photon Subtraction
Summary This project develops new sources of light that utilize quantum entanglement to enhance imaging resolution and detection. We aim to go beyond simple photon pairs and advance our understanding and control of new quantum states of light. Our approach uses deterministic single-photon subtraction (removing of a specific photon from a pulse of light) […]
July 13, 2018
Carbon Nanotube Monolayer Josephson Junction Superconducting Qubit
Carbon nanotubes (CNTs) are a promising material for use in Josephson-Junctions (JJs) given their unique properties, such as high electrical conductivity, pristine surface, inherent nanoscale dimension, and silicon-compatible processing
June 1, 2017