TQT Transformative Quantum Technologies logo
Login
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Login
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    Magnetoelectric Coupling in New Composite Multiferroic Nanostructures as High-Density Quantum Multistate Memory Elements

    Go Back Back

    More Topics

    magnetic

    Summary 

    Magnetoelectric multiferroics are materials that exhibit correlated ferroelectric and ferromagnetic properties (i.e., a magnetoelectric effect). The resulting ability of these materials to simultaneously store data in electric polarization and magnetic moment could increase data storage density and data processing speed while reducing energy consumption. This project aims to design and fabricate new composite multiferroic nanostructures with enhanced interactions between the electric polarization and spin by coupling ferroelectric and ferromagnetic components (preliminary examples of such nanostructures can be seen in the figure). First, ferromagnetic components with variable compositions and ferroelectric components with different nanostructure sizes and morphologies will be synthesized and characterized. The optimized ferroelectric and ferromagnetic components will be coupled to form the composite multiferroics, which will be probed at ensemble and single nanostructure levels to investigate the magneto-electrical properties. Additional tests will be run to optimize the fabrication method and to propose improved materials, configurations, and compositions for multiferroics systems that demonstrate enhanced magnetoelectric coupling in quantum communication applications. The results of this work can inform future designs of multifunctional nanomaterials for improved information processing and memory storage technologies.

    (a) Magnetic hysteresis loops of multiferroic nanocomposite at 5 K and 300 K. Inset: Transmission electron microscopy (TEM) image of ferromagnetic cobalt ferrite nanocubes used to prepare the composite. (b) TEM image of composite core-shell multiferroic nanowire and the corresponding elemental line scan. (c) High resolution TEM image of an interface between ferroelectric and ferromagnetic components.(What is CFO and PTO?)

    Principal Investigator (PI) or Team Coordinator

    Pavle Radovanovic

    sidebar icon sidebar icon

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Related Content

    Chiral Quantum Antenna Based on Multilayer Metasurface

    Chiral Quantum Antenna Based on Multilayer Metasurface

    Summary   Individual atoms can act as stationary qubits and thus serve as nodes in quantum computing networks or as memories for quantum repeaters. However, to successfully use qubits based on single atoms suspended in free space, photons emitted by a single atom need to be efficiently collected. Conventionally, this can be done with  high […]

    September 20, 2018

    PI: Michal Bajcsy

    Skip Tags electrical & computer engineering new ideas + 6 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Chiral Quantum Antenna Based on Multilayer Metasurface

    Implementing High-fidelity Quantum Gates in Multi-level Trapped Ions

    Summary   The scalability of quantum processors is limited by current error rates for single-qubit gates. By encoding more than a single bit of information within a single ion, multi-level “qudits” offer a promising method of increasing the information density within a quantum processor, and therefore minimizing the number of gates and associated error rates. […]

    July 30, 2018

    PI: Crystal Senko

    Skip Tags benchmarking computation + 7 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Implementing High-fidelity Quantum Gates in Multi-level Trapped Ions
    Mesoscopic systems as coherent control elements
    TQT Computation

    Mesoscopic systems as coherent control elements

    Summary  Mesoscopic systems provide a new tool for quantum systems design. In particular, they are enabling of robust quantum control. Here “mesoscopic system” refers to a connected network where each element, if studied alone, would be a quantum bit. The network is too big to be treated fully quantum mechanically. We do not have individual […]

    September 1, 2016

    PI: David Cory

    Skip Tags chemistry computation + 5 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Mesoscopic systems as coherent control elements

    Novel Superconducting Qubits for Error-Corrected Processors

    Summary In this project, we develop novel superconducting qubits for error-corrected processors to enable large-scale quantum computing. Our design efforts will specifically target error-corrected architectures through a variety of paths. Possible features will include built-in parity measurements and the use of bosonic codes, such as Fock state and Cat codes, as our starting focus. Early […]

    June 26, 2019

    PI: Christopher Wilson, Joseph Emerson, Matteo Mariantoni, David Cory

    Skip Tags computation error correction + 7 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Novel Superconducting Qubits for Error-Corrected Processors

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum for Health Design Challenge
    • Quantum for Environment Design Challenge
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo