Eye diseases such as macular degeneration can have a devastating impact on quality of life. Early detection and treatment are thus crucial for preventing irreversible vision loss. A previous study found that the human eye can detect differences in ‘structured’ light beams. Such light beams are composed of a coherent superposition of differently polarized planar and helical waves. This structured light can be created by coupling polarization and orbital angular momentum to form spin-orbit states with space-varying polarization profiles. The original study determined that a healthy human eye can discriminate between two different spin-orbit states by observing distinct images (i.e., the number of azimuthal fringes) induced by viewing each state. These findings will be expanded to further explore the limits of human perception of structured light. A strong association between an individual’s perception of a structured light beam and the imaging data collected from their eye with the same beam is expected. The possibility of using structured light beams to image ocular structures, including the macular pigment, the cornea, and the retina, will be investigated. Ocular imaging using structured light beams has the potential to detect subtle changes in macular pigment and other ocular structures that occur before macular degeneration progresses to the point of vision loss. Such new sensing tools could enable the early detection and treatment of macular degeneration and reduce the significant societal burden of the disease.
Figure 1. (Left) Representation of a spin-orbit beam composed of a coherent superposition of planar and helical polarized states. (Right) The number of fringes that the eye sees when viewing the spin-orbit beams.
Related Content

Repurposing potential drug candidates for the treatment of COVID-19
Summary The main protease (Mpro) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus disease (COVID-19), has emerged as a promising drug target. The scientific community has produced a large number of crystallographic structures of the protease, which mediates viral replication and transcription. These structures report several fragments with varied chemotypes […]
May 6, 2020

A Reformulation of Quantum Game Theory
Summary Classical game theory – conducted at the interface between economics and computer science – has found applications in topics ranging from networking and security to online markets. Despite over 20 years of research into connections between game theory and quantum information, we have yet to see any significant implications of quantum information when applied […]
April 1, 2020

Hybrid Quantum Repeater based on Atomic Quantum Memories and Telecom Wavelength Entangled Photon-Pairs Generated from Semiconductor Nanowires
Summary Losses in physical channels, such as optical fibres, limit existing quantum communication systems to modest distance ranges. Since amplification of quantum signals is fundamentally not possible, we look to extend the range and functionality of these quantum channels by adding quantum memory nodes that can daisy-chain multiple lengths of quantum channels through entanglement […]
October 29, 2018
Advanced microwave electronics enabling quantum technologies
Summary Superconducting quantum computers require quantum-limited measurements at microwave frequencies in order to implement error correction. Conventionally, this is accomplished using near quantum-limited Josephson Parametric Amplifiers (JPAs). The JPAs require bulky ferrite-based circulators that prevent on-chip integration of the amplifiers with the processor and take up the majority of space and cooling power in the […]
April 1, 2020