Summary
As monolayers, transition metal dichalcogenides (TMDCs) – such as tungsten diselenide (WSe2) – become direct-bandgap semiconductors capable of emitting light. Compared to conventional direct-bandgap semiconductors, such as III-V semiconductors like GaAs, excitons (quasiparticles made of an electron hole bound with an electron) and single-layer TMDCs (SL-TMDCs) have much stronger binding energy. Excitons and SL-TMDCS also have an extra degree of freedom called “k-valley index” or “pseudospin”, which couples with their spin in the presence of light. Due to the way the spin and valley degrees of freedom couple together, excitons in SL-TMDCs can act as a two-level quantum system, whose quantum state can be initialized and controlled with photons of specific polarization, either collectively or as individual excitons confined in quantum dots. To utilize these two-level quantum systems as solid-state qubits in a quantum device, the spectral and temporal dynamics of SL-TMDC excitons in the presence of electric and optical fields needs to be investigated. However, some of the exciton processes in SL-TMDCs happen at timescales that are beyond the resolution of streak cameras used for studies of excitons in conventional semiconductors. To overcome this problem, this research will use femtosecond photoluminescence up-conversion (fsPLupC). This technique relies on sum frequency generation that arises when the photoluminescence signal overlaps with a reference femtosecond (fs) pulse inside a non-linear crystal. It can reveal both temporal and spectral information about the studied processes, potentially with a resolution better than 100 fs. This work will provide a greater fundamental understanding of TMDC monolayers and explore their potential use as ‘valleytronic’ based quantum devices.

Figure 1. Bloch sphere depiction of the optical addressability of bright excitons in a Single-Layer TMDC. Bright excitons with pseudospin ├ |↑⟩ or ├ |↓⟩ are created (annihilated) via absorption (emission) of a right-handed or a left-handed circularly polarized photon (red and blue arrows, respectively). The equator corresponds to equal superpositions of bright excitons in the two valleys and are therefore generated by absorption of linearly polarized photons denoted by green arrows.
Related Content

Entangled Photon Orbital Angular Momentum Arrays
Summary Arrays of orbital angular momentum (OAM) states of light are a new form of structured light so far relatively unexplored in quantum information science. Unlike spin angular momentum of light, which is related to light’s polarization and covers two dimensions, OAM states, sometimes described as ‘donut beams’ due to the shape of the field […]
September 19, 2019

Quantum Light Sources Based on Deterministic Photon Subtraction
Summary This project develops new sources of light that utilize quantum entanglement to enhance imaging resolution and detection. We aim to go beyond simple photon pairs and advance our understanding and control of new quantum states of light. Our approach uses deterministic single-photon subtraction (removing of a specific photon from a pulse of light) […]
July 13, 2018

Applications of Neutron Interferometry and Structured Neutron Beams
Summary Neutrons are a powerful probe of matter and physics due to their Angstrom size wavelengths, electric neutrality and relatively large mass. In this project, we develop quantum sensors that exploit these attributes to increases the precision of measurements of fundamental forces and materials structure. With David Cory, Alexander Cronin of the University of Arizona, […]
July 31, 2018

Functionalized Nanodiamonds for Sensing Biochemical Processes
Summary Chemotherapy is limited by the failure to clinically monitor the efficacy of the treatment in real-time, which results in suboptimal chemotherapy being given for a prolonged period. Predicting the outcome of chemotherapy immediately after drug administration can increase diagnostic accuracy, efficacy outcomes, and successful treatment. Quantum nanodiamond sensors can be used as optical sensors […]
August 31, 2022