In magnetic conductors, the passage of current yields an electric field in the transverse direction even without an external magnetic field – this is known as the anomalous Hall effect (AHE). This effect can act as a convenient probe of spin ordering, magnetic textures, spin-orbit coupling, and band topology in solids, and can be further exploited for developing spintronic devices. Recently, it has been shown that low-symmetry materials can exhibit a nonlinear version of the AHE, called the NLAHE, which allows for additional material functionalities with potential practical applications. Three common low-symmetry semimetals, WTe2, MoTe2, and TaIrTe4, have exhibited the NLAHE. The first goal of this project is to measure the spin accumulation and polarization direction on the surfaces and edges of these three materials using a unique approach combining spin transport techniques with van der Waals engineering in an inert atmosphere. With an applied current, there should be a net spin accumulation on the sample boundaries and by changing the direction of current injection or tuning with gates, the spin degrees of freedom can be manipulated. The spin polarization can also be different on the surfaces and the edges due to the thickness of the layers in the semimetals. By investigating the current- and gate-dependent accumulation and polarization in the sample, we may determine a new route for the electrical control of magnetism. Further, NLAHE in the semimetals can potentially be used as novel quantum sensors to detect radiofrequency, terahertz and infrared waves. For example, the Hall response of a NLAHE material coupled to a coplanar waveguide can be measured as broadband radiofrequency signal propagates in the waveguide. This would demonstrate the capability of NLAHE to detect broadband waves at radiofrequency. Success in these experiments will allow for exotic spintronic devices and sensors to be developed with functionalities unavailable with traditional materials, which with potential benefits to applications in the defense and security sectors.
Figure 1. A coplanar waveguide coupling with an RF source delivers microwaves across a broadband (Mo/W)Te2 device, with contacts to measure the response.
Related Content

Magnetoelectric Coupling in New Composite Multiferroic Nanostructures as High-Density Quantum Multistate Memory Elements
Summary Magnetoelectric multiferroics are materials that exhibit correlated ferroelectric and ferromagnetic properties (i.e., a magnetoelectric effect). The resulting ability of these materials to simultaneously store data in electric polarization and magnetic moment could increase data storage density and data processing speed while reducing energy consumption. This project aims to design and fabricate new composite multiferroic […]
February 1, 2023
Quantum Sensing Applications using Quantum Communication Technology
Summary The Quantum Encryption and Science Satellite provides a platform to develop and deploy quantum sensing and metrology via photonic channels. This project will build upon ‘free-space’ quantum communication technology and explore new approaches and methods to advance two primary applications: quantum-enhanced telescopes, and spectroscopic sensing for methane detection in the atmosphere. For the […]
December 8, 2018

Enabling Next-Generation Sustainable Computing through Novel Multi-Valued-Logic Quantum Devices
As the demand for digital services grows, so does the need for data centres and transmission networks. Unfortunately, these data systems consume vast amounts of energy, resulting in nearly 1% of all energy-related greenhouse gas emissions. This project aims to invent novel quantum devices for highly energy-efficient computing that may help reduce the global digital […]
June 12, 2023

Next Generation Quantum Sensors
We are developing new semiconductor p-n junctions and designing novel nanowire arrays that have the potential to significantly enhance the ability to detect light at the single photon level over an unprecedented wavelength range from the ultraviolet to infrared.
June 1, 2017