TQT Transformative Quantum Technologies logo
Login
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Login
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    Towards large area, resonant quantum tunneling diodes by continuous Langmuir transfer of exfoliated 2D materials

    Go Back Back

    More Topics

    2D chemical engineering communication exfoliated film heterostructures Langmuir materials opto- electronics resonant tunneling diode RTD seed Thz

    Summary 

    Atomically thin 2D materials constitute promising building blocks for quantum devices due to their exotic, layer-dependent electronic properties. The ability to stack these materials in alternating layers enables heterostructures to be built in almost limitless combinations and over small enough length scales to observe quantum phenomena. So far though, practical implementation of devices based on layered 2D materials has been limited by the challenges of depositing or transferring single atomically thin layers over large areas and of building multi-layers from different materials. In this project, we expand on our previously demonstrated scalable deposition techniques of films for electrochemical applications and control of defects in exfoliated 2D material flakes to build electronic and optoelectronic-based quantum devices in collaboration with Prof. Na Young Kim’s group. Our central goal is to create large area heterostructures of 2D materials built by sequential Langmuir-Blodgett (LB) deposition. We will use these heterostructures to construct simple proof-of-principle quantum devices such as resonant tunneling diodes (RTDs). The work will include finding optimized film parameters for dense, ultrathin tunneling barriers, development of patterning approaches compatible with sequential LB deposition, and ultimately demonstrating a working single, double, and multi-junction RTDs on flexible substrates. While the RTD is one of the simplest quantum devices that can be fabricated from heterostructures of 2D materials, the methodologies we establish in this project will pave the way for improved THz emitters and detectors, faster transistors and memories, and other devices that rely on similar heterostructures and design.

    Figure 1. Large-area, atomically thin coatings of 2D materials prepared by continuous Langmuir deposition. Scanning electron microscopy image (top); Picture of large area coating on glass (bottom).

    Principal Investigator (PI) or Team Coordinator

    Michael Pope

    sidebar icon sidebar icon
    Group communication icon

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Related Content

    Chiral Quantum Antenna Based on Multilayer Metasurface

    Chiral Quantum Antenna Based on Multilayer Metasurface

    Summary   Individual atoms can act as stationary qubits and thus serve as nodes in quantum computing networks or as memories for quantum repeaters. However, to successfully use qubits based on single atoms suspended in free space, photons emitted by a single atom need to be efficiently collected. Conventionally, this can be done with  high […]

    September 20, 2018

    PI: Michal Bajcsy

    Skip Tags electrical & computer engineering new ideas + 6 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Chiral Quantum Antenna Based on Multilayer Metasurface
    Tuning Spin-Exchange Interactions in Low-Dimensional Metal Halide Perovskites: A New Class of Semiconductor Quantum Materials
    TQT Computation

    Tuning Spin-Exchange Interactions in Low-Dimensional Metal Halide Perovskites: A New Class of Semiconductor Quantum Materials

    Summary  Leakage current in electronic components is one of the limiting factors for the performance of conventional computers which use charges and currents as physical information carriers. Spintronics offers an alternative by using electron spin for information transfer, processing and storage, enabling the design of non-volatile computer memory and more energy-efficient electronic devices. In this […]

    October 1, 2019

    PI: Pavle Radovanovic

    Skip Tags charge chemistry + 18 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Tuning Spin-Exchange Interactions in Low-Dimensional Metal Halide Perovskites: A New Class of Semiconductor Quantum Materials
    Free-space Polarization-selective Microcavity based on Chiral Metasurfaces
    TQT Computation

    Free-space Polarization-selective Microcavity based on Chiral Metasurfaces

    Summary Developing a new type of Fabry-Pérot cavity that allows improved control of the atoms’ emission into the cavity mode will result in enhancement of the efficiency and fidelity of quantum state transfer from photons to atoms and back. This in turn can be used to improve the performance of quantum networks and repeaters, as […]

    September 19, 2019

    PI: Michal Bajscy

    Skip Tags cavity chiral + 10 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Free-space Polarization-selective Microcavity based on Chiral Metasurfaces
    Quantum Material Multilayer Photonic Devices and Network
    TQT Computation

    Quantum Material Multilayer Photonic Devices and Network

    Summary  Realizing highly integrated quantum photonic devices on a chip can enable new opportunities for photonic quantum computation. In this project, we explore heterostructures of stacked two-dimensional (2D) materials, such transition metal dichalcogenides (TMDC) or graphene, combined with optical microcavities as a platform for such devices. 2D materials are extremely thin and flexible, and have […]

    December 12, 2019

    PI: Na Young Kim

    Skip Tags 2d carbon + 14 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Quantum Material Multilayer Photonic Devices and Network

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo