TQT Transformative Quantum Technologies logo
Login
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Login
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    On-Chip Microwave-Optical Quantum Interface

    Go Back Back

    More Topics

    communication detector diamond electrical & computer engineering grand challenge memory microwave nitrogen vacancy NV photons quantum networks quantum repeater superconductivity

    Summary

     

    In this project we develop a quantum interface between microwave and optical photons as a key enabling technology of a hybrid quantum network. In such a network, the robust optical photons carry quantum information through optical fibres over long distances, while superconducting microwave circuits protected from thermal photon noise by the low temperature environment of a dilution refrigerator function as quantum nodes, providing memory, processing and routing capability. Our work includes developing an integrated, microfabricated device that interfaces the fragile microwave photons and with optical photons through either individual or ensembles of three-level solid-state quantum emitters, such as nitrogen vacancy (NV) centers in diamonds. In addition, we are developing novel quantum memory and repeater designs. Here the device itself could serve as an optical quantum memory, storing information in the ground states where we may perform quantum control via a microwave circuit. It could also serve as a specialized quantum node. Entangling operations between remote superconducting circuits can be performed for repeater operation. Finally, we will also develop an efficient microwave photon detector that works by converting microwave photons into optical photons, which can then be efficiently detected with existing technology.

     

    Figure 1. Microwave to optical conversion with a three level quantum emitter coupled to a microwave stripline cavity and an optical, e.g. a photonic-crystal, cavity: A microwave photon couples the two ground states |g> and |s> of a three-level quantum emitter with the help of the microwave cavity. The conversion is then completed through an optical pump and an enhanced emission into optical cavity coupled to the transition between the excited state |e> and the ground state |g>.

    Principal Investigator (PI) or Team Coordinator

    Michal Bajcsy & Chris Wilson

    sidebar icon sidebar icon
    Group communication icon

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Related Content

    Functionalized Nanodiamonds for Sensing Biochemical Processes
    TQT Sensing

    Functionalized Nanodiamonds for Sensing Biochemical Processes

    Summary Chemotherapy is limited by the failure to clinically monitor the efficacy of the treatment in real-time, which results in suboptimal chemotherapy being given for a prolonged period. Predicting the outcome of chemotherapy immediately after drug administration can increase diagnostic accuracy, efficacy outcomes, and successful treatment. Quantum nanodiamond sensors can be used as optical sensors […]

    August 31, 2022

    PI: Mohammad Kohandel

    Skip Tags biochemical cancer + 5 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Functionalized Nanodiamonds for Sensing Biochemical Processes

    Folk Understanding of Quantum Physics

    Summary  It is often said that quantum concepts are counterintuitive. However, quantum concepts may not be equally counterintuitive to people from all cultural backgrounds. As cultural psychologists have discovered, culture fundamentally shapes the way people make sense of the world. In particular, the last few decades of research have documented cultural differences in appreciation of […]

    March 24, 2021

    PI: Igor Grossmann

    Skip Tags culture dialecticism + 5 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Folk Understanding of Quantum Physics
    Silicon Platform for Electron Spin Qubits
    TQT Computation

    Silicon Platform for Electron Spin Qubits

    Summary   Scaling solid-state quantum processors to a useful threshold while maintaining the requisite precision in quantum control remains a challenge. We propose a quantum metal-oxide-semiconductor (QMOS) architecture operating at cryogenic temperatures that is based on a network/node approach as a means to scalability. By working with QMOS, we benefit from the deep investments and […]

    December 7, 2018

    PI: Jonathan Baugh

    Skip Tags chemistry computation + 13 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Silicon Platform for Electron Spin Qubits
    Quantum Material Multilayer Photonic Devices and Network
    TQT Computation

    Quantum Material Multilayer Photonic Devices and Network

    Summary  Realizing highly integrated quantum photonic devices on a chip can enable new opportunities for photonic quantum computation. In this project, we explore heterostructures of stacked two-dimensional (2D) materials, such transition metal dichalcogenides (TMDC) or graphene, combined with optical microcavities as a platform for such devices. 2D materials are extremely thin and flexible, and have […]

    December 12, 2019

    PI: Na Young Kim

    Skip Tags 2d carbon + 14 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Quantum Material Multilayer Photonic Devices and Network

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum for Health Design Challenge
    • Quantum for Environment Design Challenge
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo