**Summary**

An important challenge in building a quantum computer is quantifying the level of control obtained in the preparation of a quantum state. The state of a quantum device is characterized from experimental measurements, using a procedure known as tomography. Exact tomography requires a vast amount of computer resources, making it prohibitive for quantum devices larger than a few qubits. In this project we develop a practical, approximate tomography method using modern machine learning techniques. Our work is based on training artificial neural networks using measurement data obtained from a system of qubits. After training, the neural network is sampled to determine properties of the underlying quantum state. As part of a collaborative effort, we will demonstrate our machine learning algorithms on both synthetic and experimental measurement data. Our ultimate goal is to deliver practical machine learning technology to design and characterize near-term quantum devices.

## Related Content

## Quantum Simulations of Fundamental Interactions

Summary To address questions in modern physics such as “what is the structure of matter inside neutron stars?” we need better computational methods to evaluate the interplay of fundamental forces between elementary particles. To-date the response to such questions rests on numerical computer simulations that are inherently limited. In this project, we develop new theoretical […]

April 18, 2019

## Hybrid Quantum Materials towards Topological Quantum Computing

Summary Proximity engineered hybrid materials have shown promise for topological quantum information processing. This form of quantum computing provides a stable, error-tolerant approach for building scalable quantum information processors. Topological quantum computing relies on braiding non-Abelian particles, such as Majorana fermions, which do not exist in nature. One can however use materials engineering to […]

December 8, 2018

## Scanning Tunneling Microscopy of Quantum Materials, Devices and Molecules

Summary This project advances our ability to characterize and study novel quantum materials, quantum devices, and even individual molecules at the atomic level. By combining Non-Contact Atomic Force Microscopy (NC-AFM), Scanning Tunneling Microscopy (STM) and scanning gate methods, we correlate spatial information with transport properties and can locally manipulate charge, spin and structural states. […]

January 28, 2019

## Composite Superconductors for Improved Quantum Coherence

Summary Conventional superconductors have trouble performing well in magnetic fields required for electron spin resonance (ESR) – based quantum information processing applications. We can, however, use proximity engineering to select desired properties from different materials and combine them for improved superconducting performance in magnetic fields — an improvement that would have strong implications for […]

December 12, 2018