TQT Transformative Quantum Technologies logo
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    Quantum State Tomography with Machine Learning

    Go Back Back

    More Topics

    computation grand challenge machine learning physics & astronomy tomography

    Summary

     

    An important challenge in building a quantum computer is quantifying the level of control obtained in the preparation of a quantum state. The state of a quantum device is characterized from experimental measurements, using a procedure known as tomography. Exact tomography requires a vast amount of computer resources, making it prohibitive for quantum devices larger than a few qubits. In this project we develop a practical, approximate tomography method using modern machine learning techniques. Our work is based on training artificial neural networks using measurement data obtained from a system of qubits. After training, the neural network is sampled to determine properties of the underlying quantum state. As part of a collaborative effort, we will demonstrate our machine learning algorithms on both synthetic and experimental measurement data. Our ultimate goal is to deliver practical machine learning technology to design and characterize near-term quantum devices.

     

    Figure 1. A visualization of the phases of a quantum wavefunction of 100 qubits. At left, the exact value of the phases, obtained from a large-scale computer simulation. At right, the phases reconstructed with state tomography using artificial neural networks.

     

     

     

     

     

     

     

     

    Principal Investigator (PI) or Team Coordinator

    Roger Melko

    sidebar icon sidebar icon
    Group computation icon

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Related Content

    Quantum Simulation of Strongly Coupled Field Theories
    TQT Computation

    Quantum Simulation of Strongly Coupled Field Theories

    Strongly-coupled field theories describe both fundamental and applied quantum problems.

    August 10, 2017

    PI: Chris Wilson

    Skip Tags computation electrical & computer engineering + 3 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Quantum Simulation of Strongly Coupled Field Theories
    Combined momentum- and real-space photoelectric probes of dimensionality-tuned Weyl semimetals

    Combined momentum- and real-space photoelectric probes of dimensionality-tuned Weyl semimetals

    Summary   The library of two-dimensional (2D) materials has recently grown to include topological insulators and semimetals. Their incorporation in special device geometries may lead to novel quantum electronics with enhanced functionalities. Weyl semimetals, in particular, offer the most robust form of topological protection. Recent results from our group indicate that Weyl nodes should be […]

    March 12, 2019

    PI: Adam Wei Tsen

    Skip Tags 2d 3d + 13 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Combined momentum- and real-space photoelectric probes of dimensionality-tuned Weyl semimetals
    Hybrid Quantum Materials towards Topological Quantum Computing
    TQT Computation

    Hybrid Quantum Materials towards Topological Quantum Computing

    Summary   Proximity engineered hybrid materials have shown promise for topological quantum information processing. This form of quantum computing provides a stable, error-tolerant approach for building scalable quantum information processors. Topological quantum computing relies on braiding non-Abelian particles, such as Majorana fermions, which do not exist in nature. One can however use materials engineering to […]

    December 8, 2018

    PI: Guo-Xing Miao

    Skip Tags braiding computation + 8 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Hybrid Quantum Materials towards Topological Quantum Computing
    Novel High-Speed Receiver for Quantum Communication and Sensing
    TQT Communication

    Novel High-Speed Receiver for Quantum Communication and Sensing

    Summary  An essential aspect of a quantum channel is the detection and analysis of quantum signals in the form of photons. For most free-space applications, the photons are polarization encoded, e.g. by assigning the ‘0’ to horizontally polarized photons and ‘1’ to vertically polarized photons. However, where the geometric reference is not constant at all […]

    January 1, 2019

    PI: Thomas Jennewein

    Skip Tags communication detector + 11 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Novel High-Speed Receiver for Quantum Communication and Sensing

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum for Health Design Challenge
    • Quantum for Environment Design Challenge
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo