Summary
Strongly-coupled field theories describe both fundamental and applied quantum problems. With the goal of exploring these theories, we are working to develop functional quantum simulators, which take advantage of the phenomenon of superposition. Quantum simulators can perform nontrivial quantum computations more efficiently than classical technology, while requiring less processing power than a universal quantum computer. Through a variety of novel techniques, we are moving to create 2-4 qubit “gauge field” test units. Our goal is to assemble arrays encompassing up to 50 qubits. Along the way, we hope to demonstrate that such arrays can carry out simulations of fundamental physics and complex quantum materials.
Related Content

Quantum Information Processing with Molecular Lattices
The aim of the work is to develop theoretical tools to simulate and predict the behaviour of a one-dimensional chain of trapped dipolar molecules and to study the nature of entanglement as a design resource.
June 1, 2017

Topological Properties of Exciton-Polaritons in a Kagome Lattice as a Solid-state Quantum Simulator
Summary In this project, we build a solid-state quantum simulator for engineering a specific Hamiltonian. Quantum simulators are purpose-built devices with little to no need for error correction, thereby making this type of hardware less demanding than universal quantum computers. Our platform consists of exciton-polariton condensates in multiple quantum-wells sandwiched in a semiconductor Bragg […]
December 8, 2018

Development of Terahertz Polariton Lasers
Theoretical and experimental results show that the polariton lasing mechanism is a promising basis for a compact, efficient source of terahertz radiation.
July 1, 2017

Developing Tools for Quantum Characterization and Validation
Summary Coherence is essential for quantum computation; yet it introduces a unique sensitivity to any imperfections in hardware design, control systems, and the operating environment. Overcoming these sensitivities requires a hierarchy of strategies, ranging from optimization of the hardware architecture to software solutions including quantum error correction. Randomized Benchmarking Protocols are an important family of […]
October 3, 2017