## Summary

Strongly-coupled field theories describe both fundamental and applied quantum problems. With the goal of exploring these theories, we are working to develop functional quantum simulators, which take advantage of the phenomenon of superposition. Quantum simulators can perform nontrivial quantum computations more efficiently than classical technology, while requiring less processing power than a universal quantum computer. Through a variety of novel techniques, we are moving to create 2-4 qubit “gauge field” test units. Our goal is to assemble arrays encompassing up to 50 qubits. Along the way, we hope to demonstrate that such arrays can carry out simulations of fundamental physics and complex quantum materials.

## Related Content

## Entangled States of Beams and their Applications

Summary With David Cory and collaborators at the National Institute of Standards and Technology (NIST) we explore how to engineer beams of neutron or photons that carry entanglement. The degrees of freedom that can be entangled include spin (polarization), momentum, displacement, and angular momentum. These have potential applications ranging from studies of helical internal magnetic fields […]

September 7, 2016

## Reliably operating noisy quantum computers

Summary The overall goal of the project is to develop practical methods to be able to reliably run useful applications on near-term quantum computers. This requires identifying and overcoming the ubiquitous errors that currently limit quantum computing capabilities. Traditional methods of quantifying errors in quantum computers fail to predict how errors affect the output of […]

January 22, 2020

## Extensible Technology for a Medium-Scale Superconducting Quantum Processor

Summary Superconducting quantum bits, or qubits, use circuits made from superconducting materials to harness quantum mechanical states. These devices contain many atoms, but can behave as simple, controllable qubits. We are building technologies for the control and measurement of superconducting qubits to enable the first demonstration of an extensible, medium-scale quantum processor. Our approach […]

November 28, 2016

## Quantum Sensing with Small Quantum Systems

Summary There are small quantum systems over which we have very good control and which have long lifetimes. Examples include the phosphorous (P) defect in silicon (Si) and the nitrogen vacancy (NV) defect in diamond. With P defect in Si, we focus on improving our understanding of the hyperpolarization mechanism to better enable engineering of […]

December 1, 2016