Summary
An essential aspect of a quantum channel is the detection and analysis of quantum signals in the form of photons. For most free-space applications, the photons are polarization encoded, e.g. by assigning the ‘0’ to horizontally polarized photons and ‘1’ to vertically polarized photons. However, where the geometric reference is not constant at all times – such as links to hand-held devices or aircraft – polarization encoding leads to increased error. For these situations, time-bin encoding offers a promising robust solution. In this approach, time photon represents ‘0’ or ‘1’ depending on its detection in one of two time windows. Just like in the case of polarization encoding, where a photon can be in a superposition of vertical and horizontal polarization, a time-bin encoded photon can be in a superposition of being in the first and the second time window. Additionaly, quantum signals can be relatively easily converted between being polarization and time-bin encoded.
In this project, we jointly develop a quantum receiver with short time delay and high timing resolution that is optimized to handle time-bin encoded quantum signals. By combining our team’s expertise in free-space quantum receivers with a new detector array technology developed by Dr. Serge Charlebois and Jean-Francois Pratte of the University of Sherbrooke and by introducing new capabilities for integrated free-space time-bin encoding with high timing resolution detection, we expect to achieve state-of-the-art performance for quantum signal receiver technology. Such high-speed devices will open new doors for a variety of applications including daylight and continuous variable quantum key distribution, quantum sensing, imaging and LIDAR, and fundamental science tests.

Figure 1. The above animation shows the interference variation of the intensity on the single-photon camera. See details in (S. Sajeed et al, 2021)
Related Content

Structured Light Applications in Vision Science
Eye diseases such as macular degeneration can have a devastating impact on quality of life. Early detection and treatment are thus crucial for preventing irreversible vision loss. A previous study found that the human eye can detect differences in ‘structured’ light beams. Such light beams are composed of a coherent superposition of differently polarized planar […]
April 24, 2023

Scanning Tunneling Microscopy of Quantum Materials, Devices and Molecules
Summary This project advances our ability to characterize and study novel quantum materials, quantum devices, and even individual molecules at the atomic level. By combining Non-Contact Atomic Force Microscopy (NC-AFM), Scanning Tunneling Microscopy (STM) and scanning gate methods, we correlate spatial information with transport properties and can locally manipulate charge, spin and structural states. […]
January 28, 2019

Enabling Next-Generation Sustainable Computing through Novel Multi-Valued-Logic Quantum Devices
As the demand for digital services grows, so does the need for data centres and transmission networks. Unfortunately, these data systems consume vast amounts of energy, resulting in nearly 1% of all energy-related greenhouse gas emissions. This project aims to invent novel quantum devices for highly energy-efficient computing that may help reduce the global digital […]
June 12, 2023