TQT Transformative Quantum Technologies logo
Login
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Login
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    Novel High-Speed Receiver for Quantum Communication and Sensing

    Go Back Back

    More Topics

    communication detector free-space imaging joint LIDAR QKD satellite seed sensing single-photon TDC time-bin

    Summary 

    An essential aspect of a quantum channel is the detection and analysis of quantum signals in the form of photons. For most free-space applications, the photons are polarization encoded, e.g. by assigning the ‘0’ to horizontally polarized photons and ‘1’ to vertically polarized photons. However, where the geometric reference is not constant at all times – such as links to hand-held devices or aircraft – polarization encoding leads to increased error. For these situations, time-bin encoding offers a promising robust solution. In this approach, time photon represents ‘0’ or ‘1’ depending on its detection in one of two time windows. Just like in the case of polarization encoding, where a photon can be in a superposition of vertical and horizontal polarization, a time-bin encoded photon can be in a superposition of being in the first and the second time window. Additionaly, quantum signals can be relatively easily converted between being polarization and time-bin encoded.  

    In this project, we jointly develop a quantum receiver with short time delay and high timing resolution that is optimized to handle time-bin encoded quantum signals. By combining our team’s expertise in free-space quantum receivers with a new detector array technology developed by Dr. Serge Charlebois and Jean-Francois Pratte of the University of Sherbrooke and by introducing new capabilities for integrated free-space time-bin encoding with high timing resolution detection, we expect to achieve state-of-the-art performance for quantum signal receiver technology. Such high-speed devices will open new doors for a variety of applications including daylight and continuous variable quantum key distribution, quantum sensing, imaging and LIDAR, and fundamental science tests.

     

    Figure 1. The above animation shows the interference variation of the intensity on the single-photon camera. See details in (S. Sajeed et al, 2021)

     

     

     

     

     

     

     

     

     

     

     

    Principal Investigator (PI) or Team Coordinator

    Thomas Jennewein

    sidebar icon sidebar icon
    Group communication icon

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Related Content

    Quantum Simulations of Fundamental Interactions
    TQT Computation

    Quantum Simulations of Fundamental Interactions

    Summary To address questions in modern physics such as “what is the structure of matter inside neutron stars?” we need better computational methods to evaluate the interplay of fundamental forces between elementary particles. To-date the response to such questions rests on numerical computer simulations that are inherently limited. In this project, we develop new theoretical […]

    April 18, 2019

    PI: Christine Muschik

    Skip Tags 1d algorithms + 12 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Quantum Simulations of Fundamental Interactions
    Cryo-CMOS to Control and Operate 2D Fault-Tolerant Qubit Network
    TQT Computation

    Cryo-CMOS to Control and Operate 2D Fault-Tolerant Qubit Network

    Summary   Large-scale, fault-tolerant quantum computation requires precise and stable control of individual qubits. This project will use complementary metal-oxide-semiconductor (CMOS) technology to provide a cost-effective scalable platform for reliable and high-density control infrastructure for silicon spin qubits. We will use sub-micron CMOS technology to address device and circuit-level challenges and explore the integration of […]

    June 14, 2018

    PI: Lan Wei

    Skip Tags CMOS computation + 3 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Cryo-CMOS to Control and Operate 2D Fault-Tolerant Qubit Network
    Quantum Material Multilayer Photonic Devices and Network
    TQT Computation

    Quantum Material Multilayer Photonic Devices and Network

    Summary  Realizing highly integrated quantum photonic devices on a chip can enable new opportunities for photonic quantum computation. In this project, we explore heterostructures of stacked two-dimensional (2D) materials, such transition metal dichalcogenides (TMDC) or graphene, combined with optical microcavities as a platform for such devices. 2D materials are extremely thin and flexible, and have […]

    December 12, 2019

    PI: Na Young Kim

    Skip Tags 2d carbon + 14 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Quantum Material Multilayer Photonic Devices and Network

    Line-Scanning optical coherence tomography system for in-vivo, non-invasive imaging of the cellular structure and blood perfusion of biological tissue

    Summary  Optical coherence tomography (OCT) is an optical imaging method that allows for in-vivo, non-invasive imaging of the structure and vasculature of biological tissue. Commercially available, clinical OCT systems utilize point-scanning method to acquire volumetric images over a large surface with typical frame rates of ~ 30 frames/ second. Since living biological tissue is constantly […]

    August 27, 2019

    PI: Kostadinka Bizheva

    Skip Tags biology diabetic retinopathy + 11 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Line-Scanning optical coherence tomography system for in-vivo, non-invasive imaging of the cellular structure and blood perfusion of biological tissue

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum for Health Design Challenge
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo