Summary
Fault-tolerance is essential to the performance of quantum technologies, but known schemes are extremely resource intensive. Thus, improving existing schemes or inventing new schemes is of central importance. This joint project is based on the realization that fault-tolerance schemes make use of symmetries in fundamental ways, and that studying the problem of fault tolerance broadly from a symmetry perspective may offer valuable insights. We will do so by focusing on fault-tolerance and control-error mitigation primitives that make explicit use of symmetries, and unveil fundamental connections between the two. This involves the study of decoherence and error control, and measures that counteract them in two settings: fault-tolerant universal quantum computation (FTQC) using magic state distillation; and computational phases of matter. We will address which types of symmetries lead to computationally universal phases of matter, and the minimum operational cost of fault-tolerant universal quantum computation. This work is a collaboration between the research groups of David Poulin, Robert Raussendorf, and Beni Yoshida from the Université de Sherbrooke, University of British Columbia and the Perimeter Institute, respectively. Results from this project will shed light on which order parameters of condensed matter systems are important for quantum information processing and quantum sensing, and how to assess and reduce the overhead requirements for fault-tolerant quantum computation via understanding the process of magic-state distillation.

Figure 1. (a) Heat plot for the non-classicality measure mana, for a single qutrit. The grey region is completely classical, and it contains the stabilizer polytope (with dashed boundary) as a strict subset. (b) The working of quantum computation in SPT phases rest on the presence of symmetry. Shown here is a symmetry that enables quantum computational wire, a computational primitive for computation.
Related Content

Developing Tools for Quantum Characterization and Validation
Summary Coherence is essential for quantum computation; yet it introduces a unique sensitivity to any imperfections in hardware design, control systems, and the operating environment. Overcoming these sensitivities requires a hierarchy of strategies, ranging from optimization of the hardware architecture to software solutions including quantum error correction. Randomized Benchmarking Protocols are an important family of […]
October 3, 2017

Magnetoelectric Coupling in New Composite Multiferroic Nanostructures as High-Density Quantum Multistate Memory Elements
Summary Magnetoelectric multiferroics are materials that exhibit correlated ferroelectric and ferromagnetic properties (i.e., a magnetoelectric effect). The resulting ability of these materials to simultaneously store data in electric polarization and magnetic moment could increase data storage density and data processing speed while reducing energy consumption. This project aims to design and fabricate new composite multiferroic […]
February 1, 2023
QuantumIon: an open-access quantum computing platform
Summary Trapped ions are one of the most advanced technologies for quantum computing, offering multi-qubit control in a universal quantum computing architecture and the ability to perform calculations with unprecedented precision. In this project we construct a shared trapped-ion quantum computing platform, QuantumIon, that will enable a broader and interdisciplinary scientific community to access an […]
September 9, 2019
Folk Understanding of Quantum Physics
Summary It is often said that quantum concepts are counterintuitive. However, quantum concepts may not be equally counterintuitive to people from all cultural backgrounds. As cultural psychologists have discovered, culture fundamentally shapes the way people make sense of the world. In particular, the last few decades of research have documented cultural differences in appreciation of […]
March 24, 2021