Summary
Developing a new type of Fabry-Pérot cavity that allows improved control of the atoms’ emission into the cavity mode will result in enhancement of the efficiency and fidelity of quantum state transfer from photons to atoms and back. This in turn can be used to improve the performance of quantum networks and repeaters, as well as sensors based on atoms inside Fabry-Pérot cavities. In this project we design and fabricate Fabry-Pérot microcavities that trap only one polarization of light. A Fabry-Pérot cavity is an optical resonator formed by two parallel mirrors or reflective surfaces. When the frequency of light matches the spacing between the mirrors, photons can enter through the mirrors and become trapped inside the cavity, which can then be used to enhance their interactions with the medium between the mirrors. Alternatively, when an atom in an excited state is placed inside the cavity, the cavity will encourage the atom to emit light that matches the cavity, which is one of the phenomena on which laser is based. In our work, the microcavity consists of two metasurfaces that act as chiral polarization-selective (dichroic) mirrors and that tightly confine one type of circularly polarized optical field in the free space between them, while remaining transparent to light of the opposite circular polarization. We propose to realize free space Fabry-Pérot cavities by fabricating reflective and focusing metasurfaces on the tips of optical fibres. Finally, this project has the potential to improve the performance and scalability of quantum information platforms that rely on cavity quantum electrodynamics, and possibly trapped ions as well, by realizing optical cavities with smaller mode volumes, compact footprint, and chirality-enhanced light-atom coupling.
Related Content
Quantum Dynamics of Cavity Interactions with Spin Ensembles
Summary High quality factor cavities can be powerful control elements for ensembles of spins, enabling unitary control as well as on demand cooling. They can also be used to couple two otherwise non-interacting ensembles. The goal of the project is to explore the physics and engineering of such systems both theoretically and experimentally. The laboratory contains a […]
September 7, 2016
Coherent magnon generation, magnon condensation, and quantum spin liquids via spin pumping in 2D magnets
Summary Developing hybrid quantum systems is essential to harnessing the complementary advantages of different quantum technology platforms. This necessitates the successful transfer of quantum information between platforms, which can be achieved, e.g., by harnessing magnons, or spin wave excitations, in magnetic materials. Decoherence due to uncontrolled coupling of qubits to the environment remains a fundamental […]
February 1, 2023
Next Generation Quantum Sensors
We are developing new semiconductor p-n junctions and designing novel nanowire arrays that have the potential to significantly enhance the ability to detect light at the single photon level over an unprecedented wavelength range from the ultraviolet to infrared.
June 1, 2017
Carbon Nanotube Monolayer Josephson Junction Superconducting Qubit
Carbon nanotubes (CNTs) are a promising material for use in Josephson-Junctions (JJs) given their unique properties, such as high electrical conductivity, pristine surface, inherent nanoscale dimension, and silicon-compatible processing
June 1, 2017