Summary
Chemotherapy is limited by the failure to clinically monitor the efficacy of the treatment in real-time, which results in suboptimal chemotherapy being given for a prolonged period. Predicting the outcome of chemotherapy immediately after drug administration can increase diagnostic accuracy, efficacy outcomes, and successful treatment. Quantum nanodiamond sensors can be used as optical sensors and drug delivery probes for chemotherapy. In particular, nanodiamonds containing nitrogen-vacancy (NV) centers can serve as attractive probes for optically sensing chemical reactions and biological processes, thanks to their small size, bio-compatibility, and fluorescent properties of the NV centers. This work focuses on variations in the relaxation time in the nanodiamond NV centers, which change when the nanodiamonds are brought into proximity to Gadolinium (Gd) ions – for example, by using a peptide sequence as a connector between the nanodiamond and a Gd compound – and can be optically monitored. The experiment will investigate one type of action of chemotherapeutic drugs, which is to induce cell death (apoptosis) of the cancer cells. Specific enzymes released during apoptosis can cut the connection between the nanodiamonds and Gd, separating NVs from the Gd and decreasing the relaxation rate. Thus, observing the differences in relaxation rate upon chemotherapy allows the drug’s efficacy to be immediately monitored.
Figure 1. A specific enzyme (Caspase 3) is released in the presence of an effective chemotherapeutic drug, resulting in the separation of nanodiamonds and Gd and decreasing the relaxation rate.
Related Content
Novel Superconducting Qubits for Error-Corrected Processors
Summary In this project, we develop novel superconducting qubits for error-corrected processors to enable large-scale quantum computing. Our design efforts will specifically target error-corrected architectures through a variety of paths. Possible features will include built-in parity measurements and the use of bosonic codes, such as Fock state and Cat codes, as our starting focus. Early […]
June 26, 2019

Reliably operating noisy quantum computers
Summary The overall goal of the project is to develop practical methods to be able to reliably run useful applications on near-term quantum computers. This requires identifying and overcoming the ubiquitous errors that currently limit quantum computing capabilities. Traditional methods of quantifying errors in quantum computers fail to predict how errors affect the output of […]
January 22, 2020

Quantum Material Multilayer Photonic Devices and Network
Summary Realizing highly integrated quantum photonic devices on a chip can enable new opportunities for photonic quantum computation. In this project, we explore heterostructures of stacked two-dimensional (2D) materials, such transition metal dichalcogenides (TMDC) or graphene, combined with optical microcavities as a platform for such devices. 2D materials are extremely thin and flexible, and have […]
December 12, 2019

Mesoscopic systems as coherent control elements
Summary Mesoscopic systems provide a new tool for quantum systems design. In particular, they are enabling of robust quantum control. Here “mesoscopic system” refers to a connected network where each element, if studied alone, would be a quantum bit. The network is too big to be treated fully quantum mechanically. We do not have individual […]
September 1, 2016