Summary
Chemotherapy is limited by the failure to clinically monitor the efficacy of the treatment in real-time, which results in suboptimal chemotherapy being given for a prolonged period. Predicting the outcome of chemotherapy immediately after drug administration can increase diagnostic accuracy, efficacy outcomes, and successful treatment. Quantum nanodiamond sensors can be used as optical sensors and drug delivery probes for chemotherapy. In particular, nanodiamonds containing nitrogen-vacancy (NV) centers can serve as attractive probes for optically sensing chemical reactions and biological processes, thanks to their small size, bio-compatibility, and fluorescent properties of the NV centers. This work focuses on variations in the relaxation time in the nanodiamond NV centers, which change when the nanodiamonds are brought into proximity to Gadolinium (Gd) ions – for example, by using a peptide sequence as a connector between the nanodiamond and a Gd compound – and can be optically monitored. The experiment will investigate one type of action of chemotherapeutic drugs, which is to induce cell death (apoptosis) of the cancer cells. Specific enzymes released during apoptosis can cut the connection between the nanodiamonds and Gd, separating NVs from the Gd and decreasing the relaxation rate. Thus, observing the differences in relaxation rate upon chemotherapy allows the drug’s efficacy to be immediately monitored.
Figure 1. A specific enzyme (Caspase 3) is released in the presence of an effective chemotherapeutic drug, resulting in the separation of nanodiamonds and Gd and decreasing the relaxation rate.
Related Content
Folk Understanding of Quantum Physics
Summary It is often said that quantum concepts are counterintuitive. However, quantum concepts may not be equally counterintuitive to people from all cultural backgrounds. As cultural psychologists have discovered, culture fundamentally shapes the way people make sense of the world. In particular, the last few decades of research have documented cultural differences in appreciation of […]
March 24, 2021
Fabrication of Ultra Low Noise RF SQUID Amplifiers
A superconducting quantum interference device (SQUID) is an extremely sensitive magnetic field detector.
June 1, 2017

Developing Tools for Quantum Characterization and Validation
Summary Coherence is essential for quantum computation; yet it introduces a unique sensitivity to any imperfections in hardware design, control systems, and the operating environment. Overcoming these sensitivities requires a hierarchy of strategies, ranging from optimization of the hardware architecture to software solutions including quantum error correction. Randomized Benchmarking Protocols are an important family of […]
October 3, 2017

Portable Quantum Dot Measurement System
Summary Detecting heavy metals in water is essential to ensure clean drinking water and appropriate regulatory decisions following an accident (e.g., a spill) or an emergency. Traditionally, high-sensitivity detection of heavy metals requires bulky and costly (to purchase and operate) lab-based instruments. We propose developing a palm-sized, element-specific, highly-sensitive, battery-operated, smartphone-controlled system for on-site measurement […]
July 21, 2022