TQT Transformative Quantum Technologies logo
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    Quantum Information Processing with Molecular Lattices

    Go Back Back

    More Topics

    chemistry computation new ideas seed fund

    Summary

     

    The aim of the work is to develop theoretical tools to simulate and predict the behaviour of a one-dimensional chain of trapped dipolar molecules and to study the nature of entanglement as a design resource. In this device, individual water molecules are trapped inside C60 fullerene cages (also known as buckyballs), which in turn are inserted into a carbon nanotube. Such a peapod-like structure can be created using recent advances in organic synthesis. Remarkably, the quantum level structure of the guest molecule in the carbon nanotube peapod remains nearly identical to a free molecule, which makes this system a promising platform for implementing quantum information protocols, comparable to those explored with atoms and molecules trapped in optical lattices. Along the way, we are working to understand the response of the device to external electromagnetic fields, which could open the door to its use for precision electric field sensing with potential capabilities to detect fields from a single molecule.

    Principal Investigator (PI) or Team Coordinator

    Pierre-Nicholas Roy

    sidebar icon sidebar icon sidebar icon
    Group computation icon

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Related Content

    Quantum State Tomography with Machine Learning
    TQT Computation

    Quantum State Tomography with Machine Learning

    Summary   An important challenge in building a quantum computer is quantifying the level of control obtained in the preparation of a quantum state. The state of a quantum device is characterized from experimental measurements, using a procedure known as tomography. Exact tomography requires a vast amount of computer resources, making it prohibitive for quantum […]

    June 6, 2018

    PI: Roger Melko

    Skip Tags computation grand challenge + 3 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Quantum State Tomography with Machine Learning

    Advanced microwave electronics enabling quantum technologies

    Summary  Superconducting quantum computers require quantum-limited measurements at microwave frequencies in order to implement error correction. Conventionally, this is accomplished using near quantum-limited Josephson Parametric Amplifiers (JPAs). The JPAs require bulky ferrite-based circulators that prevent on-chip integration of the amplifiers with the processor and take up the majority of space and cooling power in the […]

    April 1, 2020

    PI: Raafat Mansour

    Skip Tags amplifier computation + 9 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Advanced microwave electronics enabling quantum technologies
    Zero-Dimensional Quantum Materials for the Next Generation of Highly-Selective Chemical Sensors

    Zero-Dimensional Quantum Materials for the Next Generation of Highly-Selective Chemical Sensors

    Summary   Heavy metals are a major public health concern and their on-site detection in water supplies is not well served by existing lab techniques. We develop a new multi-modal platform comprising functionalized quantum dots of two-dimensional materials (2D-QDs) for the sensing of four highly-toxic heavy metal pollutants (arsenic, cadmium, lead and mercury). The zero-dimensional […]

    March 11, 2019

    PI: Kevin Musselman

    Skip Tags 0d 2d + 9 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Zero-Dimensional Quantum Materials for the Next Generation of Highly-Selective Chemical Sensors
    Rydberg Atom Array Quantum Simulator
    TQT Computation

    Rydberg Atom Array Quantum Simulator

    Summary  Quantum simulators enable probing the static and dynamic properties of correlated quantum many-body systems that would otherwise be numerically inaccessible using classical simulators. We are developing quantum simulators based on arrays of neutral atoms excited to Rydberg states. Such Rydberg atom arrays are advantageous for simulating the dynamics of interacting spin systems (Ising spin […]

    February 27, 2020

    PI: Alexandre Cooper-Roy

    Skip Tags atom arrays computation + 8 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Rydberg Atom Array Quantum Simulator

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum for Health Design Challenge
    • Quantum for Environment Design Challenge
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo