Summary
In this project, we build a solid-state quantum simulator for engineering a specific Hamiltonian. Quantum simulators are purpose-built devices with little to no need for error correction, thereby making this type of hardware less demanding than universal quantum computers. Our platform consists of exciton-polariton condensates in multiple quantum-wells sandwiched in a semiconductor Bragg stack onto which a two-dimensional lattice was imprinted. The lattice imprinting can be achieved, for example, by partial etching of the spacer with the lattice pattern followed by an overgrowth of the upper layers of the Bragg structure.
We are particularly interested in exciton-polariton condensates in a kagome lattice, where we can identify topological properties as a function of particle density. A standard optical technique allows us to quantify wavefunctions of exciton-polaritons. To do this, we construct an interferometer for measurement and use power-dependent photoluminescence to identify quantum phases in the kagome lattice.
Our goal is to advance the measurement of topological parameters and knowledge of condensed matter physics in engineered exciton-polariton simulators. This will serve to elucidate quantum phases in a controlled manner and bring us closer to a quantum simulator capable of delivering meaningful insights into quantum materials and optimization.

Figure 1. (top) A hexagonal lattice of micro-cavities formed in a Bragg stack structure with a spacer (white layer) sandwiching multiple quantum wells (red layers). (bottom) Bandstructures of exciton-polaritons in a two-dimensional kagome lattice. As the pump power changes, exciton-polaritons undergo phase transition to form coherent states: below threshold (a) P/Pth ~ 0.04, near threshold (b) P/Pth ~ 1, and above threshold (c) P/Pth ~ 2, where Pth is the threshold pump power.
Related Content
Quantum Sensing Applications using Quantum Communication Technology
Summary The Quantum Encryption and Science Satellite provides a platform to develop and deploy quantum sensing and metrology via photonic channels. This project will build upon ‘free-space’ quantum communication technology and explore new approaches and methods to advance two primary applications: quantum-enhanced telescopes, and spectroscopic sensing for methane detection in the atmosphere. For the […]
December 8, 2018
Novel Superconducting Qubits for Error-Corrected Processors
Summary In this project, we develop novel superconducting qubits for error-corrected processors to enable large-scale quantum computing. Our design efforts will specifically target error-corrected architectures through a variety of paths. Possible features will include built-in parity measurements and the use of bosonic codes, such as Fock state and Cat codes, as our starting focus. Early […]
June 26, 2019

Materials for Majorana-based Topological Qubits
Summary Topological qubits offer a novel pathway to scalable quantum computing by simultaneously allowing for ease of coupling between qubits and strong decoupling of qubits from noise and dissipation. The most promising direction explores the topologically induced protection of theoretically predicted exotic quasiparticles, the so-called Majorana Zero Modes or MZMs. To-date MZMs, which follow […]
January 28, 2019

Free-space Polarization-selective Microcavity based on Chiral Metasurfaces
Summary Developing a new type of Fabry-Pérot cavity that allows improved control of the atoms’ emission into the cavity mode will result in enhancement of the efficiency and fidelity of quantum state transfer from photons to atoms and back. This in turn can be used to improve the performance of quantum networks and repeaters, as […]
September 19, 2019