## Summary

In this project, we build a solid-state quantum simulator for engineering a specific Hamiltonian. Quantum simulators are purpose-built devices with little to no need for error correction, thereby making this type of hardware less demanding than universal quantum computers. Our platform consists of exciton-polariton condensates in multiple quantum-wells sandwiched in a semiconductor Bragg stack onto which a two-dimensional lattice was imprinted. The lattice imprinting can be achieved, for example, by partial etching of the spacer with the lattice pattern followed by an overgrowth of the upper layers of the Bragg structure.

We are particularly interested in exciton-polariton condensates in a kagome lattice, where we can identify topological properties as a function of particle density. A standard optical technique allows us to quantify wavefunctions of exciton-polaritons. To do this, we construct an interferometer for measurement and use power-dependent photoluminescence to identify quantum phases in the kagome lattice.

Our goal is to advance the measurement of topological parameters and knowledge of condensed matter physics in engineered exciton-polariton simulators. This will serve to elucidate quantum phases in a controlled manner and bring us closer to a quantum simulator capable of delivering meaningful insights into quantum materials and optimization.

## Related Content

## Two-Dimensional Quantum Materials and Heterostructures

Two-dimensional (2D) layers just one atom thick can be stripped from certain materials, such as graphene.

June 1, 2017

## Entangled Photon Orbital Angular Momentum Arrays

Summary Arrays of orbital angular momentum (OAM) states of light are a new form of structured light so far relatively unexplored in quantum information science. Unlike spin angular momentum of light, which is related to light’s polarization and covers two dimensions, OAM states, sometimes described as ‘donut beams’ due to the shape of the field […]

September 19, 2019

## Harnessing the Promise of Quantum Materials for Future Electronic Devices

Summary Two-dimensional (2D) quantum materials, such as graphene and molybdenum disulfide, have great potential for use in future flexible and wearable electronics applications. With traditional silicon-based electronics nearing their theoretical performance limits, nano-electronics made from 2D quantum materials offer breakthrough opportunities for energy-efficient, wearable ubiquitous computation. In this project, we will study integration of […]

June 14, 2018

## Developing Tools for Quantum Characterization and Validation

Summary Coherence is essential for quantum computation; yet it introduces a unique sensitivity to any imperfections in hardware design, control systems, and the operating environment. Overcoming these sensitivities requires a hierarchy of strategies, ranging from optimization of the hardware architecture to software solutions including quantum error correction. Randomized Benchmarking Protocols are an important family of […]

October 3, 2017