TQT Transformative Quantum Technologies logo
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    Distributing Multimode Entanglement with Microwave Photons

    Go Back Back

    More Topics

    communication electrical & computer engineering grand challenge

    Summary

     

    Microwaves have enabled numerous classical technologies, in part because they propagate through air with little energy loss. Using novel approaches, we are working to demonstrate the generation of two or more entangled microwave photons. The photons themselves can be used for quantum communication or can be used on-chip to entangle separated parts of a quantum processor. We are also working toward other milestones, such as using microwaves to demonstrate remote entanglement of qubits. One of our goals is to boost capability for quantum communication, which can lead to a next-generation Internet, and which is a focal point in the quantum space race that has emerged with other nations. We also expect our work to advance the field of quantum computing.

     

     

    Principal Investigator (PI) or Team Coordinator

    Chris Wilson

    sidebar icon sidebar icon
    Group communication icon

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Related Content

    Towards large area, resonant quantum tunneling diodes by continuous Langmuir transfer of exfoliated 2D materials
    TQT Communication

    Towards large area, resonant quantum tunneling diodes by continuous Langmuir transfer of exfoliated 2D materials

    Summary  Atomically thin 2D materials constitute promising building blocks for quantum devices due to their exotic, layer-dependent electronic properties. The ability to stack these materials in alternating layers enables heterostructures to be built in almost limitless combinations and over small enough length scales to observe quantum phenomena. So far though, practical implementation of devices based […]

    April 1, 2020

    PI: Michael Pope

    Skip Tags 2D chemical engineering + 11 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Towards large area, resonant quantum tunneling diodes by continuous Langmuir transfer of exfoliated 2D materials
    Quantum Dynamics of Cavity Interactions with Spin Ensembles
    TQT Computation

    Quantum Dynamics of Cavity Interactions with Spin Ensembles

    Summary   High quality factor cavities can be powerful control elements for ensembles of spins, enabling unitary control as well as on demand cooling. They can also be used to couple two otherwise non-interacting ensembles. The goal of the project is to explore the physics and engineering of such systems both theoretically and experimentally. The laboratory contains a […]

    September 7, 2016

    PI: David Cory

    Skip Tags cavity chemistry + 4 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Quantum Dynamics of Cavity Interactions with Spin Ensembles
    Micro-Supercapacitors Based on Termination Optimized MXene Quantum Dots with Ultra-High Rate Capability and Fast Frequency Response

    Micro-Supercapacitors Based on Termination Optimized MXene Quantum Dots with Ultra-High Rate Capability and Fast Frequency Response

    Micro-supercapacitors (MCs) are miniaturized energy storage devices that can enhance the performance of wearable health devices, medical implants, wireless sensors, and micro-electromechanical systems due to their fast frequency response, long life cycle, and vast temperature operation. However, to make these MC systems into commercially feasible products, necessary improvements to current MC performance are necessary, primarily […]

    June 12, 2023

    PI: Aiping Yu

    Skip Tags Applied Carbon Nanotechnology Lab energy + 2 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Micro-Supercapacitors Based on Termination Optimized MXene Quantum Dots with Ultra-High Rate Capability and Fast Frequency Response
    Mesoscopic systems as coherent control elements
    TQT Computation

    Mesoscopic systems as coherent control elements

    Summary  Mesoscopic systems provide a new tool for quantum systems design. In particular, they are enabling of robust quantum control. Here “mesoscopic system” refers to a connected network where each element, if studied alone, would be a quantum bit. The network is too big to be treated fully quantum mechanically. We do not have individual […]

    September 1, 2016

    PI: David Cory

    Skip Tags chemistry computation + 5 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Mesoscopic systems as coherent control elements

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum for Health Design Challenge
    • Quantum for Environment Design Challenge
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo