Summary
Quantum simulators have the potential to bring unprecedented capabilities in areas such as the discovery of new materials and drugs. Engineering precise and programmable interaction graphs between qubits or spins forms the backbone of simulator applications. The trapped ion system is unique in that the interaction graph between qubits can be programmed, in principle arbitrarily. In the context of quantum many-body physics simulation, a programmable interaction graph will allow us to investigate a wide range of spin models relevant to condensed matter systems and high energy physics. In this project we investigate the feasibility of creating an arbitrary qubit-qubit interaction graph and experimentally characterize the interactions. The robustness of such graphs, including errors from experimental parameters, will be analyzed in collaboration with Roger Melko’s group. We will combine theoretical ideas from quantum information processing and many-body physics, numerical optimization and machine learning techniques, and experimental optical and atomic physics techniques.
This project will enhance the capability of trapped ion quantum simulators significantly beyond the state-of-the-art and will identify a set of concrete many-body physics problems that can be realistically simulated. Altogether these contributions will form an enabling step towards the scalability of a quantum processor.

Figure 1. Trapped ion qubits (black discs) are essentially a fully-connected system. The goal of this project is to engineer and characterize the qubit-qubit interaction graph (represented by the red and blue bonds) using precisely tuned laser beams (blue shades with white arrows).
Related Content
Novel Superconducting Qubits for Error-Corrected Processors
Summary In this project, we develop novel superconducting qubits for error-corrected processors to enable large-scale quantum computing. Our design efforts will specifically target error-corrected architectures through a variety of paths. Possible features will include built-in parity measurements and the use of bosonic codes, such as Fock state and Cat codes, as our starting focus. Early […]
June 26, 2019

Extensible Technology for a Medium-Scale Superconducting Quantum Processor
Summary Superconducting quantum bits, or qubits, use circuits made from superconducting materials to harness quantum mechanical states. These devices contain many atoms, but can behave as simple, controllable qubits. We are building technologies for the control and measurement of superconducting qubits to enable the first demonstration of an extensible, medium-scale quantum processor. Our approach […]
November 28, 2016

Carbon Nanotube Monolayer Josephson Junction Superconducting Qubit
Carbon nanotubes (CNTs) are a promising material for use in Josephson-Junctions (JJs) given their unique properties, such as high electrical conductivity, pristine surface, inherent nanoscale dimension, and silicon-compatible processing
June 1, 2017

Applications of Neutron Interferometry and Structured Neutron Beams
Summary Neutrons are a powerful probe of matter and physics due to their Angstrom size wavelengths, electric neutrality and relatively large mass. In this project, we develop quantum sensors that exploit these attributes to increases the precision of measurements of fundamental forces and materials structure. With David Cory, Alexander Cronin of the University of Arizona, […]
July 31, 2018