TQT Transformative Quantum Technologies logo
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    Metasurfaces for high-efficiency parametric downconversion and complex quantum state generation

    Go Back Back

    More Topics

    entangled photons quantum processing quantum state engineering

    Summary 

    Entangled photon sources are crucial for quantum computing, quantum sensing, and quantum communication. Of growing importance are sources relying on spontaneous parametric downconversion (SPDC). Unfortunately, these sources of entangled photons are often constrained by momentum conservation laws. To overcome this limitation and expand the possibility of quantum state engineering, we intend to use metasurfaces – a term that refers to periodic 2D arrays of nanoresonators with subwavelength dimensions and spacing – made of highly nonlinear optical materials, in which light-matter interactions can be engineered in novel ways. This project aims to optimize the generation efficiency of entangled photons using epitaxially grown metasurfaces. GaAs is commonly used to enable efficient photon pair generation. While current GaAs-based SPDC metasurfaces are fabricated using the GaAs(001) crystal orientation, the proposed project instead posits using a GaAs crystal orientation known as GaAs(111) that is more challenging to grow but can enhance the rate of photon pair generation by at least one order of magnitude and potentially as much as three orders of magnitude. The epitaxial growth of GaAs-based structures on GaAs(111) substrates will first be explored to optimize layer morphology at an atomic scale. The metasurface design will also be optimized using a deep neural network technique. In close feedback with the modeling, metasurfaces with different designs will be fabricated on the grown GaAs(111) layers. The nonlinear optical response of the metasurfaces will be measured to continue refining of the design, and the entangled photon pair generation correlation will be studied. These new quantum optical metasurfaces can potentially enable the creation of complex photon quantum states, including cluster states and multichannel single photons, that could facilitate compact quantum information processing and universal measurement-based quantum computation.

    Figure 1: Spatial multiplexing of four metasurfaces for generating a general cluster graph state using a single multifrequency pump beam.

    Principal Investigator (PI) or Team Coordinator

    Zbig Wasilewski

    sidebar icon sidebar icon sidebar icon sidebar icon

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Related Content

    Using Interactive Digital Storytelling to Represent Transformative Quantum Technologies in Augmented/Extended Reality Environments

    Summary A major roadblock to the broader adoption of quantum technologies is the long learning curve associated with their seemingly abstract concepts. This often renders quantum technologies inaccessible to most audiences, especially through explanations using conventional scientific language. In this project, we develop novel methods of interactive digital storytelling – augmented and extended reality (AR/XR) […]

    February 24, 2021

    PI: Lai-Tze Fan

    Skip Tags AR augmented + 9 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Using Interactive Digital Storytelling to Represent Transformative Quantum Technologies in Augmented/Extended Reality Environments
    Quantum Dynamics of Cavity Interactions with Spin Ensembles
    TQT Computation

    Quantum Dynamics of Cavity Interactions with Spin Ensembles

    Summary   High quality factor cavities can be powerful control elements for ensembles of spins, enabling unitary control as well as on demand cooling. They can also be used to couple two otherwise non-interacting ensembles. The goal of the project is to explore the physics and engineering of such systems both theoretically and experimentally. The laboratory contains a […]

    September 7, 2016

    PI: David Cory

    Skip Tags cavity chemistry + 4 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Quantum Dynamics of Cavity Interactions with Spin Ensembles
    Developing Tools for Quantum Characterization and Validation
    TQT Computation

    Developing Tools for Quantum Characterization and Validation

    Summary   Coherence is essential for quantum computation; yet it introduces a unique sensitivity to any imperfections in hardware design, control systems, and the operating environment. Overcoming these sensitivities requires a hierarchy of strategies, ranging from optimization of the hardware architecture to software solutions including quantum error correction. Randomized Benchmarking Protocols are an important family of […]

    October 3, 2017

    PI: Joseph Emerson

    Skip Tags applied math computation + 3 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Developing Tools for Quantum Characterization and Validation
    Hybrid Quantum Repeater based on Atomic Quantum Memories and Telecom Wavelength Entangled Photon-Pairs Generated from Semiconductor Nanowires
    TQT Communication

    Hybrid Quantum Repeater based on Atomic Quantum Memories and Telecom Wavelength Entangled Photon-Pairs Generated from Semiconductor Nanowires

    Summary   Losses in physical channels, such as optical fibres, limit existing quantum communication systems to modest distance ranges. Since amplification of quantum signals is fundamentally not possible,  we look to extend the range and functionality of these quantum channels by adding quantum memory nodes that can daisy-chain multiple lengths of quantum channels through entanglement […]

    October 29, 2018

    PI: Michal Bajcsy & Michael Reimer

    Skip Tags communication electrical & computer engineering + 8 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Hybrid Quantum Repeater based on Atomic Quantum Memories and Telecom Wavelength Entangled Photon-Pairs Generated from Semiconductor Nanowires

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum for Health Design Challenge
    • Quantum for Environment Design Challenge
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo