Summary
Arrays of orbital angular momentum (OAM) states of light are a new form of structured light so far relatively unexplored in quantum information science. Unlike spin angular momentum of light, which is related to light’s polarization and covers two dimensions, OAM states, sometimes described as ‘donut beams’ due to the shape of the field intensity distribution in their cross section, are in principle an infinite dimensional system and can be used to carry much more information per photon. In this project, we generate arrays of entangled orbital angular momentum beams and explore the utility of the spatially entangled photons in quantum communication protocols, such as remote state preparation. In collaboration with Dmitry Pushin, David Cory, and Thomas Jennewein, we study the propagation of entangled OAM arrays and their self-imaging capabilities known as the Talbot Effect, which hold promise for developing a new method to measure OAM. As we learn to control the spatial patterns of these light beams we expect they may find application in sensing of periodic optical structures in materials.
Related Content
A Reformulation of Quantum Game Theory
Summary Classical game theory – conducted at the interface between economics and computer science – has found applications in topics ranging from networking and security to online markets. Despite over 20 years of research into connections between game theory and quantum information, we have yet to see any significant implications of quantum information when applied […]
April 1, 2020
Quantum Dynamics of Cavity Interactions with Spin Ensembles
Summary High quality factor cavities can be powerful control elements for ensembles of spins, enabling unitary control as well as on demand cooling. They can also be used to couple two otherwise non-interacting ensembles. The goal of the project is to explore the physics and engineering of such systems both theoretically and experimentally. The laboratory contains a […]
September 7, 2016
Zero-Dimensional Quantum Materials for the Next Generation of Highly-Selective Chemical Sensors
Summary Heavy metals are a major public health concern and their on-site detection in water supplies is not well served by existing lab techniques. We develop a new multi-modal platform comprising functionalized quantum dots of two-dimensional materials (2D-QDs) for the sensing of four highly-toxic heavy metal pollutants (arsenic, cadmium, lead and mercury). The zero-dimensional […]
March 11, 2019