TQT Transformative Quantum Technologies logo
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    Using Interactive Digital Storytelling to Represent Transformative Quantum Technologies in Augmented/Extended Reality Environments

    Go Back Back

    More Topics

    AR augmented communication digital storytelling extended knowledge translation mobilization new ideas reality seed XR

    Summary

    A major roadblock to the broader adoption of quantum technologies is the long learning curve associated with their seemingly abstract concepts. This often renders quantum technologies inaccessible to most audiences, especially through explanations using conventional scientific language. In this project, we develop novel methods of interactive digital storytelling – augmented and extended reality (AR/XR) environments – to make quantum technologies more transparent and accessible to a variety of audiences, including the general public, educators, and key decision makers of technology-based funding, policies, and industries. One outcome of this project will be an open-source AR/XR reality environment through which users can visually, spatially, and physically explore quantum phenomena and applications. Through simple interactive representations and open-access resources, our aim is to advance Canada’s quantum research to the forefront through nearly global online outreach to prospective knowledge users.

    Principal Investigator (PI) or Team Coordinator

    Lai-Tze Fan

    sidebar icon
    Group communication icon

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Related Content

    Photonic Quantum Processor
    TQT Computation

    Photonic Quantum Processor

    Photonic quantum processors based on integrated quantum photonic circuits require entangled photon pairs to perform quantum computations. However, current state-of-the-art technologies utilize probabilistic entangled photon sources with limited pair-extraction efficiencies, negatively affecting the computation speed. This project aims to boost the speed of on-chip quantum operations by using bright, on-demand entangled photon sources with an […]

    April 24, 2023

    PI: Michael Reimer

    Skip Tags computation entanglement + 5 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Photonic Quantum Processor
    Extensible Technology for a Medium-Scale Superconducting Quantum Processor
    TQT Computation

    Extensible Technology for a Medium-Scale Superconducting Quantum Processor

    Summary   Superconducting quantum bits, or qubits, use circuits made from superconducting materials to harness quantum mechanical states. These devices contain many atoms, but can behave as simple, controllable qubits. We are building technologies for the control and measurement of superconducting qubits to enable the first demonstration of an extensible, medium-scale quantum processor. Our approach […]

    November 28, 2016

    PI: Matteo Mariantoni

    Skip Tags computation grand challenge

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Extensible Technology for a Medium-Scale Superconducting Quantum Processor
    Quantum Dynamics of Cavity Interactions with Spin Ensembles
    TQT Computation

    Quantum Dynamics of Cavity Interactions with Spin Ensembles

    Summary   High quality factor cavities can be powerful control elements for ensembles of spins, enabling unitary control as well as on demand cooling. They can also be used to couple two otherwise non-interacting ensembles. The goal of the project is to explore the physics and engineering of such systems both theoretically and experimentally. The laboratory contains a […]

    September 7, 2016

    PI: David Cory

    Skip Tags cavity chemistry + 4 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Quantum Dynamics of Cavity Interactions with Spin Ensembles
    Spin Generation and High-Frequency Detection via the Quantum Nonlinear Anomalous Hall Effect in Weyl Semimetals
    TQT Sensing

    Spin Generation and High-Frequency Detection via the Quantum Nonlinear Anomalous Hall Effect in Weyl Semimetals

    In magnetic conductors, the passage of current yields an electric field in the transverse direction even without an external magnetic field – this is known as the anomalous Hall effect (AHE). This effect can act as a convenient probe of spin ordering, magnetic textures, spin-orbit coupling, and band topology in solids, and can be further […]

    April 19, 2023

    PI: Adam Wei Tsen

    Skip Tags magnetic properties materials + 1 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Spin Generation and High-Frequency Detection via the Quantum Nonlinear Anomalous Hall Effect in Weyl Semimetals

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum for Health Design Challenge
    • Quantum for Environment Design Challenge
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo