Click to go back to home
  • En
  • Fr
Get Connected
Click to go back to home
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

#nanowire

Go Back Back
Go to Photonic Quantum Processor
Photonic Quantum Processor
TQT Computation

Photonic Quantum Processor

Photonic quantum processors based on integrated quantum photonic circuits require entangled photon pairs to perform quantum computations. However, current state-of-the-art technologies utilize probabilistic entangled photon sources with limited pair-extraction efficiencies, negatively affecting the computation speed. This project aims to boost the speed of on-chip quantum operations by using bright, on-demand entangled photon sources with an […]

April 24, 2023

PI: Michael Reimer

Skip Tags computation entanglement + 5 Additional

  • Share on Twitter
  • Share on Facebook
  • Share on LinkedIn
  • Go to Photonic Quantum Processor
Go to Quantum photonic devices using shaped semiconductor nanowires
Quantum photonic devices using shaped semiconductor nanowires
TQT Sensing

Quantum photonic devices using shaped semiconductor nanowires

Find Michael Reimer’s SPIE Photonics for Quantum 2020 presentation here : Quantum photonic devices using shaped semiconductor nanowires (spiedigitallibrary.org)  

August 27, 2021

Skip Tags broadband infrared + 9 Additional

  • Share on Twitter
  • Share on Facebook
  • Share on LinkedIn
  • Go to Quantum photonic devices using shaped semiconductor nanowires
Go to Hybrid Quantum Repeater based on Atomic Quantum Memories and Telecom Wavelength Entangled Photon-Pairs Generated from Semiconductor Nanowires
Hybrid Quantum Repeater based on Atomic Quantum Memories and Telecom Wavelength Entangled Photon-Pairs Generated from Semiconductor Nanowires
TQT Communication

Hybrid Quantum Repeater based on Atomic Quantum Memories and Telecom Wavelength Entangled Photon-Pairs Generated from Semiconductor Nanowires

Summary   Losses in physical channels, such as optical fibres, limit existing quantum communication systems to modest distance ranges. Since amplification of quantum signals is fundamentally not possible,  we look to extend the range and functionality of these quantum channels by adding quantum memory nodes that can daisy-chain multiple lengths of quantum channels through entanglement […]

October 29, 2018

PI: Michal Bajcsy

Skip Tags communication electrical & computer engineering + 8 Additional

  • Share on Twitter
  • Share on Facebook
  • Share on LinkedIn
  • Go to Hybrid Quantum Repeater based on Atomic Quantum Memories and Telecom Wavelength Entangled Photon-Pairs Generated from Semiconductor Nanowires

Connect with Us

Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

Get Connected
TQT Logo
First Canada Logo
  • twitter icon
  • facebook icon
  • youtube icon
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing
TQT Logo
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing
  • twitter icon
  • facebook icon
  • youtube icon
First Canada Logo
TQT Logo
  • twitter icon
  • facebook icon
  • youtube icon
  • Research
  • Overview
  • Updates
  • Projects
  • Publications
  • Labs
  • Quantum Innovation Cycle
  • Opportunities
  • Overview
  • Quantum for Health Design Challenge
  • Quantum for Environment Design Challenge
  • Quantum Seed
  • Technology Development
  • Open Positions
  • Events
  • All Events
  • About
  • Overview
  • People
  • Media
  • Contact
First Canada Logo