Summary
Trapped ions are one of the most advanced technologies for quantum computing, offering multi-qubit control in a universal quantum computing architecture and the ability to perform calculations with unprecedented precision. In this project we construct a shared trapped-ion quantum computing platform, QuantumIon, that will enable a broader and interdisciplinary scientific community to access an advanced quantum computing platform, thereby accelerating the discovery of new methods and applications of quantum computing.To this end, we build appropriate control electronics, test the suitability of our chosen barium isotope for multi-qubit operations, and construct a 10-qubit processor and benchmark its performance in collaboration with Joseph Emerson. We then demonstrate quantum algorithms from a variety of applications areas: quantum simulation by Rajibul Islam in collaboration with Christine Muschik, quantum error correction in collaboration with Raymond Laflamme, and characterization of multi-level qudits by Crystal Senko in collaboration with Joseph Emerson and Joel Wallman. The QuantumIon will make trapped ion hardware more automated and accessible to users, opening up a range of new experiments from quantum optics to multi-level qudit manipulation to quantum error correction.
Related Content
Fabrication of Ultra Low Noise RF SQUID Amplifiers
A superconducting quantum interference device (SQUID) is an extremely sensitive magnetic field detector.
June 1, 2017

Photonic Quantum Processor
Photonic quantum processors based on integrated quantum photonic circuits require entangled photon pairs to perform quantum computations. However, current state-of-the-art technologies utilize probabilistic entangled photon sources with limited pair-extraction efficiencies, negatively affecting the computation speed. This project aims to boost the speed of on-chip quantum operations by using bright, on-demand entangled photon sources with an […]
April 24, 2023

Engineering and Characterizing Programmable Interaction Graphs in a Trapped Ion Quantum Simulator
Summary Quantum simulators have the potential to bring unprecedented capabilities in areas such as the discovery of new materials and drugs. Engineering precise and programmable interaction graphs between qubits or spins forms the backbone of simulator applications. The trapped ion system is unique in that the interaction graph between qubits can be programmed, in […]
July 24, 2018

Quantum Simulations of Fundamental Interactions
Summary To address questions in modern physics such as “what is the structure of matter inside neutron stars?” we need better computational methods to evaluate the interplay of fundamental forces between elementary particles. To-date the response to such questions rests on numerical computer simulations that are inherently limited. In this project, we develop new theoretical […]
April 18, 2019