Summary
Topological qubits offer a novel pathway to scalable quantum computing by simultaneously allowing for ease of coupling between qubits and strong decoupling of qubits from noise and dissipation. The most promising direction explores the topologically induced protection of theoretically predicted exotic quasiparticles, the so-called Majorana Zero Modes or MZMs. To-date MZMs, which follow non-Abelian statistics, have largely evaded unambiguous experimental demonstration. This project aims to provide a suitable material platform to realize MZMs. To achieve this, we develop a high-mobility semiconductor layer structure in order to observe the experimental signature of Majorana fermions on a platform that can be readily scaled and advanced to logical qubit devices. This project utilizes the molecular beam epitaxy (MBE) facility, the Quantum NanoFab and Characterization facility, and cryogenic measurement facilities available at UW to produce high-mobility material and turn epitaxial heterostructures into working devices. Furthermore, we collaborate with Jonathan Baugh’s group on quantum transport, fabrication and cryogenic measurements. This project advances all stages of developing a device based on topological qubits: design, MBE growth, fabrication and final testing. We would like to demonstrate and use the non-Abelian statistics of Majorana fermions to form topological qubits in epitaxial heterostructures and produce devices that could in the future lead to topologically protected quantum computers.

Figure 1. Concept visualization of two bound Majorana Zero Modes (MZM, in red), under a superconductor island (grey), all within a gate-defined quantum wire. The semi-transparent blue layer represents the host two-dimensional electron gas in the semiconductor single crystal.
Related Content

Entangled States of Beams and their Applications
Summary With David Cory and collaborators at the National Institute of Standards and Technology (NIST) we explore how to engineer beams of neutron or photons that carry entanglement. The degrees of freedom that can be entangled include spin (polarization), momentum, displacement, and angular momentum. These have potential applications ranging from studies of helical internal magnetic fields […]
September 7, 2016
Using Interactive Digital Storytelling to Represent Transformative Quantum Technologies in Augmented/Extended Reality Environments
Summary A major roadblock to the broader adoption of quantum technologies is the long learning curve associated with their seemingly abstract concepts. This often renders quantum technologies inaccessible to most audiences, especially through explanations using conventional scientific language. In this project, we develop novel methods of interactive digital storytelling – augmented and extended reality (AR/XR) […]
February 24, 2021

Novel Infrared Camera Based on Quantum Sensors for Biomedical Applications
Summary In this project we develop a novel infrared camera with low noise and high detection efficiency for biomedical applications of optical coherence tomography (OCT) using quantum materials. OCT is a technique used to image the back of the eye and allow for the diagnosis of detrimental eye conditions, for e.g., macular degeneration, diabetic retinopathy […]
March 13, 2019

Silicon Platform for Electron Spin Qubits
Summary Scaling solid-state quantum processors to a useful threshold while maintaining the requisite precision in quantum control remains a challenge. We propose a quantum metal-oxide-semiconductor (QMOS) architecture operating at cryogenic temperatures that is based on a network/node approach as a means to scalability. By working with QMOS, we benefit from the deep investments and […]
December 7, 2018