Summary
Topological qubits offer a novel pathway to scalable quantum computing by simultaneously allowing for ease of coupling between qubits and strong decoupling of qubits from noise and dissipation. The most promising direction explores the topologically induced protection of theoretically predicted exotic quasiparticles, the so-called Majorana Zero Modes or MZMs. To-date MZMs, which follow non-Abelian statistics, have largely evaded unambiguous experimental demonstration. This project aims to provide a suitable material platform to realize MZMs. To achieve this, we develop a high-mobility semiconductor layer structure in order to observe the experimental signature of Majorana fermions on a platform that can be readily scaled and advanced to logical qubit devices. This project utilizes the molecular beam epitaxy (MBE) facility, the Quantum NanoFab and Characterization facility, and cryogenic measurement facilities available at UW to produce high-mobility material and turn epitaxial heterostructures into working devices. Furthermore, we collaborate with Jonathan Baugh’s group on quantum transport, fabrication and cryogenic measurements. This project advances all stages of developing a device based on topological qubits: design, MBE growth, fabrication and final testing. We would like to demonstrate and use the non-Abelian statistics of Majorana fermions to form topological qubits in epitaxial heterostructures and produce devices that could in the future lead to topologically protected quantum computers.

Figure 1. Concept visualization of two bound Majorana Zero Modes (MZM, in red), under a superconductor island (grey), all within a gate-defined quantum wire. The semi-transparent blue layer represents the host two-dimensional electron gas in the semiconductor single crystal.
Related Content

Ultrafast Dynamical Studies of Valley-Based Qubits
Summary As monolayers, transition metal dichalcogenides (TMDCs) – such as tungsten diselenide (WSe2) – become direct-bandgap semiconductors capable of emitting light. Compared to conventional direct-bandgap semiconductors, such as III-V semiconductors like GaAs, excitons (quasiparticles made of an electron hole bound with an electron) and single-layer TMDCs (SL-TMDCs) have much stronger binding energy. Excitons and […]
June 29, 2018

Quantum State Tomography with Machine Learning
Summary An important challenge in building a quantum computer is quantifying the level of control obtained in the preparation of a quantum state. The state of a quantum device is characterized from experimental measurements, using a procedure known as tomography. Exact tomography requires a vast amount of computer resources, making it prohibitive for quantum […]
June 6, 2018

Quantum Simulation of Strongly Coupled Field Theories
Strongly-coupled field theories describe both fundamental and applied quantum problems.
August 10, 2017

Extensible Technology for a Medium-Scale Superconducting Quantum Processor
Summary Superconducting quantum bits, or qubits, use circuits made from superconducting materials to harness quantum mechanical states. These devices contain many atoms, but can behave as simple, controllable qubits. We are building technologies for the control and measurement of superconducting qubits to enable the first demonstration of an extensible, medium-scale quantum processor. Our approach […]
November 28, 2016