Summary
In this project we develop a novel infrared camera with low noise and high detection efficiency for biomedical applications of optical coherence tomography (OCT) using quantum materials. OCT is a technique used to image the back of the eye and allow for the diagnosis of detrimental eye conditions, for e.g., macular degeneration, diabetic retinopathy and glaucoma. It can also be used for early detection of Alzheimer’s disease. However, current OCT systems are limited by their low sensitivity and spatial resolution. To provide more precise early diagnosis of potentially blinding ocular diseases, we utilize the unique expertise of a collaborative team of researchers to develop an infrared camera with sub-micron resolution and single-photon sensitivity: design and nano fabrication of quantum sensors (Reimer), design and fabrication of CMOS electrical read-out circuits to make the camera (Karim and Levine), and extensive knowledge and research expertise in the area of OCT (Bizheva). At the heart of the infrared camera is a single photon detector recently developed through another TQT-supported project, Next Generation Quantum Sensors. This sensor is based on nanostructured arrays of tapered semiconductor nanowires and is capable to detect light with high efficiency, speed, and timing resolution over an unprecedented wavelength range from the UV to infrared, all while operating at room temperature. This sensor will be integrated into a prototype camera and into existing OCT systems to realize enhanced OCT images of the human retina and cornea in-vivo.
Related Content

Magnetoelectric Coupling in New Composite Multiferroic Nanostructures as High-Density Quantum Multistate Memory Elements
Summary Magnetoelectric multiferroics are materials that exhibit correlated ferroelectric and ferromagnetic properties (i.e., a magnetoelectric effect). The resulting ability of these materials to simultaneously store data in electric polarization and magnetic moment could increase data storage density and data processing speed while reducing energy consumption. This project aims to design and fabricate new composite multiferroic […]
February 1, 2023

Quantum State Tomography with Machine Learning
Summary An important challenge in building a quantum computer is quantifying the level of control obtained in the preparation of a quantum state. The state of a quantum device is characterized from experimental measurements, using a procedure known as tomography. Exact tomography requires a vast amount of computer resources, making it prohibitive for quantum […]
June 6, 2018
Spin-transfer Torque Magnetic Random Access Memory for On-chip Spin Information Storage
Summary Leakage power in semiconductor memories, such as Dynamic Random Access Memory (DRAM) and Static Random Access Memory (SRAM), can be substantial and is one of the limits for scalability of classical electronics. This is attributed to the fact that the information stored is volatile, requiring constant refreshing, as well as reprogramming upon powering […]
August 6, 2018

Novel High-Speed Receiver for Quantum Communication and Sensing
Summary An essential aspect of a quantum channel is the detection and analysis of quantum signals in the form of photons. For most free-space applications, the photons are polarization encoded, e.g. by assigning the ‘0’ to horizontally polarized photons and ‘1’ to vertically polarized photons. However, where the geometric reference is not constant at all […]
January 1, 2019