**Summary**

The overall goal of the project is to develop practical methods to be able to reliably run useful applications on near-term quantum computers. This requires identifying and overcoming the ubiquitous errors that currently limit quantum computing capabilities. Traditional methods of quantifying errors in quantum computers fail to predict how errors affect the output of a quantum computation because the exact impact depends upon the exact form of the noise, additional errors arising from interactions between control mechanisms (e.g., crosstalk) and idle qubits, and how the gates are translated and scheduled into temporal pulses. One promising way to account for global errors is to define a parallel quantum instruction (PQI) to be a set of quantum operations executed in a fixed temporal order, including all idle gates for qubits that are not explicitly targeted by any quantum operation. In this project we develop a general method for reconstructing global noise during a cycle of parallel quantum gates and a framework for mitigating and/or extrapolating errors, leading to an experimental demonstration of their effectiveness. This will enable near-term quantum computers to be used to accurately simulate quantum systems and to determine the accuracy of the simulations.

## Related Content

## Engineering and Characterizing Programmable Interaction Graphs in a Trapped Ion Quantum Simulator

Summary Quantum simulators have the potential to bring unprecedented capabilities in areas such as the discovery of new materials and drugs. Engineering precise and programmable interaction graphs between qubits or spins forms the backbone of simulator applications. The trapped ion system is unique in that the interaction graph between qubits can be programmed, in […]

July 24, 2018

## Cryo-CMOS to Control and Operate 2D Fault-Tolerant Qubit Network

Summary Large-scale, fault-tolerant quantum computation requires precise and stable control of individual qubits. This project will use complementary metal-oxide-semiconductor (CMOS) technology to provide a cost-effective scalable platform for reliable and high-density control infrastructure for silicon spin qubits. We will use sub-micron CMOS technology to address device and circuit-level challenges and explore the integration of […]

June 14, 2018

## Carbon Nanotube Monolayer Josephson Junction Superconducting Qubit

Carbon nanotubes (CNTs) are a promising material for use in Josephson-Junctions (JJs) given their unique properties, such as high electrical conductivity, pristine surface, inherent nanoscale dimension, and silicon-compatible processing

June 1, 2017

## Extensible Technology for a Medium-Scale Superconducting Quantum Processor

Summary Superconducting quantum bits, or qubits, use circuits made from superconducting materials to harness quantum mechanical states. These devices contain many atoms, but can behave as simple, controllable qubits. We are building technologies for the control and measurement of superconducting qubits to enable the first demonstration of an extensible, medium-scale quantum processor. Our approach […]

November 28, 2016