TQT Transformative Quantum Technologies logo
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    Hybrid Quantum Repeater based on Atomic Quantum Memories and Telecom Wavelength Entangled Photon-Pairs Generated from Semiconductor Nanowires

    Go Back Back

    More Topics

    communication electrical & computer engineering entangled photons grand challenge memory nanowire nodes quantum dots quantum repeater silicon

    Summary

     

    Losses in physical channels, such as optical fibres, limit existing quantum communication systems to modest distance ranges. Since amplification of quantum signals is fundamentally not possible,  we look to extend the range and functionality of these quantum channels by adding quantum memory nodes that can daisy-chain multiple lengths of quantum channels through entanglement and thus extend the communication distance — an approach known as ‘quantum repeater’. Quantum repeaters are by necessity hybrid devices, as they connect flying qubits (photons) to small processors for error correction and privacy amplification. In this project we develop a two-node proof-of-principle hybrid quantum repeater system. We generate entangled photon pairs from quantum dots embedded in semiconductor nanowire and store them in atomic quantum memories following a frequency up-conversion. We expect this will enable quantum key distribution over long distances at rates exceeding those possible through a direct link. The photon-pair sources, the frequency converters, as well as the quantum memories will be implemented in compact on-chip platforms. This novel approach combines the advantages available from a deterministic and tunable solid-state source of bright entangled photon pairs with the potential for high-efficiency long-lived quantum memory that is achievable with laser cooled atoms. The ultimate goal is to achieve a working pair of quantum repeater nodes at practically relevant wavelengths that would lead to useful rates for long-distance quantum key distribution.

     

    Figure 1. The two quantum dots (red triangles embedded in semiconductor nanowires) produce pairs of entangled photons. One photon from each pair is stored in an atomic ensemble memory, while the other photon is sent into a coincidence measurement setup, which generates entanglement between the two atomic ensembles.

    Principal Investigator (PI) or Team Coordinator

    Michal Bajcsy & Michael Reimer

    sidebar icon sidebar icon
    Group communication icon

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Related Content

    Reliably operating noisy quantum computers
    TQT Computation

    Reliably operating noisy quantum computers

    Summary The overall goal of the project is to develop practical methods to be able to reliably run useful applications on near-term quantum computers. This requires identifying and overcoming the ubiquitous errors that currently limit quantum computing capabilities. Traditional methods of quantifying errors in quantum computers fail to predict how errors affect the output of […]

    January 22, 2020

    PI: Joel Wallman

    Skip Tags accuracy applied mathematics + 8 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Reliably operating noisy quantum computers

    QuantumIon: an open-access quantum computing platform

    Summary Trapped ions are one of the most advanced technologies for quantum computing, offering multi-qubit control in a universal quantum computing architecture and the ability to perform calculations with unprecedented precision. In this project we construct a shared trapped-ion quantum computing platform, QuantumIon, that will enable a broader and interdisciplinary scientific community to access an […]

    September 9, 2019

    PI: Crystal Senko, Kazi Rajibul Islam

    Skip Tags barium benchmarking + 10 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to QuantumIon: an open-access quantum computing platform
    Topological Properties of Exciton-Polaritons in a Kagome Lattice as a Solid-state Quantum Simulator
    TQT Computation

    Topological Properties of Exciton-Polaritons in a Kagome Lattice as a Solid-state Quantum Simulator

    Summary   In this project, we build a solid-state quantum simulator for engineering a specific Hamiltonian. Quantum simulators are purpose-built devices with little to no need for error correction, thereby making this type of hardware less demanding than universal quantum computers. Our platform consists of exciton-polariton condensates in multiple quantum-wells sandwiched in a semiconductor Bragg […]

    December 8, 2018

    PI: Na Young Kim

    Skip Tags computation grand challenge + 7 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Topological Properties of Exciton-Polaritons in a Kagome Lattice as a Solid-state Quantum Simulator
    Structured Light Applications in Vision Science
    TQT Sensing

    Structured Light Applications in Vision Science

    Eye diseases such as macular degeneration can have a devastating impact on quality of life. Early detection and treatment are thus crucial for preventing irreversible vision loss. A previous study found that the human eye can detect differences in ‘structured’ light beams. Such light beams are composed of a coherent superposition of differently polarized planar […]

    April 24, 2023

    PI: Ben Thompson

    Skip Tags eye light + 5 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Structured Light Applications in Vision Science

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum for Health Design Challenge
    • Quantum for Environment Design Challenge
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo