Line-Scanning optical coherence tomography system for in-vivo, non-invasive imaging of the cellular structure and blood perfusion of biological tissue
Summary Optical coherence tomography (OCT) is an optical imaging method that allows for in-vivo, non-invasive imaging of the structure and vasculature of biological tissue. Commercially available, clinical OCT systems utilize point-scanning method to acquire volumetric images over a large surface with typical frame rates of ~ 30 frames/ second. Since living biological tissue is constantly […]
August 27, 2019
Novel Infrared Camera Based on Quantum Sensors for Biomedical Applications
Summary In this project we develop a novel infrared camera with low noise and high detection efficiency for biomedical applications of optical coherence tomography (OCT) using quantum materials. OCT is a technique used to image the back of the eye and allow for the diagnosis of detrimental eye conditions, for e.g., macular degeneration, diabetic retinopathy […]
March 13, 2019
Novel High-Speed Receiver for Quantum Communication and Sensing
Summary An essential aspect of a quantum channel is the detection and analysis of quantum signals in the form of photons. For most free-space applications, the photons are polarization encoded, e.g. by assigning the ‘0’ to horizontally polarized photons and ‘1’ to vertically polarized photons. However, where the geometric reference is not constant at all […]
January 1, 2019
Quantum Sensing Applications using Quantum Communication Technology
Summary The Quantum Encryption and Science Satellite provides a platform to develop and deploy quantum sensing and metrology via photonic channels. This project will build upon ‘free-space’ quantum communication technology and explore new approaches and methods to advance two primary applications: quantum-enhanced telescopes, and spectroscopic sensing for methane detection in the atmosphere. For the […]
December 8, 2018
Applications of Neutron Interferometry and Structured Neutron Beams
Summary Neutrons are a powerful probe of matter and physics due to their Angstrom size wavelengths, electric neutrality and relatively large mass. In this project, we develop quantum sensors that exploit these attributes to increases the precision of measurements of fundamental forces and materials structure. With David Cory, Alexander Cronin of the University of Arizona, […]
July 31, 2018
Waterloo chemists create faster and more efficient way to process information
Friday, May 11, 2018 University of Waterloo chemists have found a much faster and more efficient way to store and process information by expanding the limitations of how the flow of electricity can be used and managed. In a recently released study, the chemists discovered that light can induce magnetization in certain semiconductors – the standard […]
May 14, 2018
Plasmon Control of Quantum States in Semiconductor Nanocrystals
Summary Thanks to the light-induced collective oscillations of free charges at the boundary between a conducting material and a dielectric, known as surface plasmon resonance, metallic nanostructures can exhibit strong light absorption and scattering. The sensitivity of these resonances to the local environment and shape of the metallic structures allows them to be used, […]
March 21, 2018
New interferometry technique more powerful and cost-effective
Tuesday, March 20, 2018 A new neutron interferometry technique developed by researchers from the Institute for Quantum Computing, the National Institute of Standards and Technology (NIST) and the National Institute of Health (NIH) will allow for faster and more precise measurements, and could pave the way for advances in imaging, materials science and quantum […]
March 20, 2018
Quantum Dot Enabled Organic Photo-Transistor
Friday, March 16, 2018 Congratulations to the team Fluorosense for placing 2nd in the Nanotechnology Capstone Project Symposium. The team developed a ‘Quantum Dot Enabled Organic Photo-Transistor’ to improve the responsivity of phototransistor detectors. Their goal was to decrease the concentration of the fluorescent agents required to produce a sufficient optical signal, and thereby […]
March 16, 2018
A new way to use neutrons
Monday, March 12, 2018 Novel neutron interferometry technique is more powerful and practical. Researchers at the Institute for Quantum Computing (IQC), in collaboration with researchers from the National Institute of Standards and Technology (NIST) and the National Institute of Health (NIH), have developed a neutron interferometry technique that is more powerful, robust and practical than […]
March 12, 2018
Researchers bring high res magnetic resonance imaging to nanometer scale
Tuesday, February 20, 2018 A new technique that brings magnetic resonance imaging to the nanometer scale with unprecedented resolution will open the door for major advances in understanding new materials, virus particles and proteins that cause diseases like Parkinson’s and Alzheimer’s. Researchers at the Institute for Quantum Computing used a new type of hardware and […]
February 20, 2018