TQT Transformative Quantum Technologies logo
Login
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Login
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    Quantum Sensing Applications using Quantum Communication Technology

    Go Back Back

    More Topics

    communication grand challenge imaging interference methane photons QEYSSAT spectroscopy telescopes

    Summary

     

    The Quantum Encryption and Science Satellite provides a platform to develop and deploy quantum sensing and metrology via photonic channels. This project will build upon ‘free-space’ quantum communication technology and explore new approaches and methods to advance two primary applications: quantum-enhanced telescopes, and spectroscopic sensing for methane detection in the atmosphere. For the telescope application we will develop novel methods for imaging using multi-photon interference, such as in long-baseline telescopes. For greenhouse gas monitoring, we will perform a detailed analysis of a two-photon sensing setup, prepare a feasibility study on trace gas metrology using quantum communication channels, and move the demonstration from in-lab to outdoors, and finally to field deployment (two optical telescopes). This project also supports long-distance quantum communication by providing a framework and justification for quantum repeater networks. We expect these advancements will find wider application in enhanced performance of atmospheric environmental monitoring and imaging.

    Principal Investigator (PI) or Team Coordinator

    Thomas Jennewein

    sidebar icon sidebar icon
    Group communication icon

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Related Content

    Quantum Simulations of Fundamental Interactions
    TQT Computation

    Quantum Simulations of Fundamental Interactions

    Summary To address questions in modern physics such as “what is the structure of matter inside neutron stars?” we need better computational methods to evaluate the interplay of fundamental forces between elementary particles. To-date the response to such questions rests on numerical computer simulations that are inherently limited. In this project, we develop new theoretical […]

    April 18, 2019

    PI: Christine Muschik

    Skip Tags 1d algorithms + 12 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Quantum Simulations of Fundamental Interactions
    Molecular Scale Magnetic Resonance Imaging
    TQT Sensing

    Molecular Scale Magnetic Resonance Imaging

    Through its phenomenal ability to image soft tissues, magnetic resonance imaging (MRI) has revolutionized both clinical medicine and research biomedicine.

    September 9, 2016

    PI: Raffi Budakian

    Skip Tags grand challenge imaging device + 2 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Molecular Scale Magnetic Resonance Imaging
    Two-Dimensional Quantum Materials and Heterostructures
    TQT Computation

    Two-Dimensional Quantum Materials and Heterostructures

    Two-dimensional (2D) layers just one atom thick can be stripped from certain materials, such as graphene.

    June 1, 2017

    PI: Adam Wei Tsen

    Skip Tags 2d chemistry + 5 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Two-Dimensional Quantum Materials and Heterostructures

    Novel Superconducting Qubits for Error-Corrected Processors

    Summary In this project, we develop novel superconducting qubits for error-corrected processors to enable large-scale quantum computing. Our design efforts will specifically target error-corrected architectures through a variety of paths. Possible features will include built-in parity measurements and the use of bosonic codes, such as Fock state and Cat codes, as our starting focus. Early […]

    June 26, 2019

    PI: Christopher Wilson, Joseph Emerson, Matteo Mariantoni, David Cory

    Skip Tags computation error correction + 7 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Novel Superconducting Qubits for Error-Corrected Processors

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum for Health Design Challenge
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo