TQT Transformative Quantum Technologies logo
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    Reliably operating noisy quantum computers

    Go Back Back

    More Topics

    accuracy applied mathematics computation error correction grand challenge noise parallel quantum instruction performance pqi simulation

    Summary

    The overall goal of the project is to develop practical methods to be able to reliably run useful applications on near-term quantum computers. This requires identifying and overcoming the ubiquitous errors that currently limit quantum computing capabilities. Traditional methods of quantifying errors in quantum computers fail to predict how errors affect the output of a quantum computation because the exact impact depends upon the exact form of the noise, additional errors arising from interactions between control mechanisms (e.g., crosstalk) and idle qubits, and how the gates are translated and scheduled into temporal pulses. One promising way to account for global errors is to define a parallel quantum instruction (PQI) to be a set of quantum operations executed in a fixed temporal order, including all idle gates for qubits that are not explicitly targeted by any quantum operation. In this project we develop a general method for reconstructing global noise during a cycle of parallel quantum gates and a framework for mitigating and/or extrapolating errors, leading to an experimental demonstration of their effectiveness. This will enable near-term quantum computers to be used to accurately simulate quantum systems and to determine the accuracy of the simulations.

     

    Figure 1. Schematic circuit implementation of the experimental cycle benchmarking protocol for characterizing a noisy parallel quantum instruction G (red). The green gates are used to probe how closely G maps different input states to the desired output state. Random gates (blue) are used to engineer a simple noise model to make the characterization protocol accurate and efficient.

    Principal Investigator (PI) or Team Coordinator

    Joel Wallman

    sidebar icon sidebar icon
    Group computation icon

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Related Content

    Advanced microwave electronics enabling quantum technologies

    Summary  Superconducting quantum computers require quantum-limited measurements at microwave frequencies in order to implement error correction. Conventionally, this is accomplished using near quantum-limited Josephson Parametric Amplifiers (JPAs). The JPAs require bulky ferrite-based circulators that prevent on-chip integration of the amplifiers with the processor and take up the majority of space and cooling power in the […]

    April 1, 2020

    PI: Raafat Mansour

    Skip Tags amplifier computation + 9 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Advanced microwave electronics enabling quantum technologies

    Novel Superconducting Qubits for Error-Corrected Processors

    Summary In this project, we develop novel superconducting qubits for error-corrected processors to enable large-scale quantum computing. Our design efforts will specifically target error-corrected architectures through a variety of paths. Possible features will include built-in parity measurements and the use of bosonic codes, such as Fock state and Cat codes, as our starting focus. Early […]

    June 26, 2019

    PI: Christopher Wilson, Joseph Emerson, Matteo Mariantoni, David Cory

    Skip Tags computation error correction + 7 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Novel Superconducting Qubits for Error-Corrected Processors
    Topological Properties of Exciton-Polaritons in a Kagome Lattice as a Solid-state Quantum Simulator
    TQT Computation

    Topological Properties of Exciton-Polaritons in a Kagome Lattice as a Solid-state Quantum Simulator

    Summary   In this project, we build a solid-state quantum simulator for engineering a specific Hamiltonian. Quantum simulators are purpose-built devices with little to no need for error correction, thereby making this type of hardware less demanding than universal quantum computers. Our platform consists of exciton-polariton condensates in multiple quantum-wells sandwiched in a semiconductor Bragg […]

    December 8, 2018

    PI: Na Young Kim

    Skip Tags computation grand challenge + 7 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Topological Properties of Exciton-Polaritons in a Kagome Lattice as a Solid-state Quantum Simulator
    Extensible Technology for a Medium-Scale Superconducting Quantum Processor
    TQT Computation

    Extensible Technology for a Medium-Scale Superconducting Quantum Processor

    Summary   Superconducting quantum bits, or qubits, use circuits made from superconducting materials to harness quantum mechanical states. These devices contain many atoms, but can behave as simple, controllable qubits. We are building technologies for the control and measurement of superconducting qubits to enable the first demonstration of an extensible, medium-scale quantum processor. Our approach […]

    November 28, 2016

    PI: Matteo Mariantoni

    Skip Tags computation grand challenge

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Extensible Technology for a Medium-Scale Superconducting Quantum Processor

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum for Health Design Challenge
    • Quantum for Environment Design Challenge
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo