Summary
The overall goal of the project is to develop practical methods to be able to reliably run useful applications on near-term quantum computers. This requires identifying and overcoming the ubiquitous errors that currently limit quantum computing capabilities. Traditional methods of quantifying errors in quantum computers fail to predict how errors affect the output of a quantum computation because the exact impact depends upon the exact form of the noise, additional errors arising from interactions between control mechanisms (e.g., crosstalk) and idle qubits, and how the gates are translated and scheduled into temporal pulses. One promising way to account for global errors is to define a parallel quantum instruction (PQI) to be a set of quantum operations executed in a fixed temporal order, including all idle gates for qubits that are not explicitly targeted by any quantum operation. In this project we develop a general method for reconstructing global noise during a cycle of parallel quantum gates and a framework for mitigating and/or extrapolating errors, leading to an experimental demonstration of their effectiveness. This will enable near-term quantum computers to be used to accurately simulate quantum systems and to determine the accuracy of the simulations.

Figure 1. Schematic circuit implementation of the experimental cycle benchmarking protocol for characterizing a noisy parallel quantum instruction G (red). The green gates are used to probe how closely G maps different input states to the desired output state. Random gates (blue) are used to engineer a simple noise model to make the characterization protocol accurate and efficient.
Related Content
Advanced microwave electronics enabling quantum technologies
Summary Superconducting quantum computers require quantum-limited measurements at microwave frequencies in order to implement error correction. Conventionally, this is accomplished using near quantum-limited Josephson Parametric Amplifiers (JPAs). The JPAs require bulky ferrite-based circulators that prevent on-chip integration of the amplifiers with the processor and take up the majority of space and cooling power in the […]
April 1, 2020

Portable Quantum Dot Measurement System
Summary Detecting heavy metals in water is essential to ensure clean drinking water and appropriate regulatory decisions following an accident (e.g., a spill) or an emergency. Traditionally, high-sensitivity detection of heavy metals requires bulky and costly (to purchase and operate) lab-based instruments. We propose developing a palm-sized, element-specific, highly-sensitive, battery-operated, smartphone-controlled system for on-site measurement […]
July 21, 2022

Zero-Dimensional Quantum Materials for the Next Generation of Highly-Selective Chemical Sensors
Summary Heavy metals are a major public health concern and their on-site detection in water supplies is not well served by existing lab techniques. We develop a new multi-modal platform comprising functionalized quantum dots of two-dimensional materials (2D-QDs) for the sensing of four highly-toxic heavy metal pollutants (arsenic, cadmium, lead and mercury). The zero-dimensional […]
March 11, 2019

Cryo-CMOS to Control and Operate 2D Fault-Tolerant Qubit Network
Summary Large-scale, fault-tolerant quantum computation requires precise and stable control of individual qubits. This project will use complementary metal-oxide-semiconductor (CMOS) technology to provide a cost-effective scalable platform for reliable and high-density control infrastructure for silicon spin qubits. We will use sub-micron CMOS technology to address device and circuit-level challenges and explore the integration of […]
June 14, 2018