TQT Transformative Quantum Technologies logo
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    Novel Superconducting Qubits for Error-Corrected Processors

    Go Back Back

    More Topics

    computation error correction grand challenge large group project multi-qubit processor scalability spectroscopy superconductivity

    Summary

    In this project, we develop novel superconducting qubits for error-corrected processors to enable large-scale quantum computing. Our design efforts will specifically target error-corrected architectures through a variety of paths. Possible features will include built-in parity measurements and the use of bosonic codes, such as Fock state and Cat codes, as our starting focus. Early on, we will fabricate “generation one” devices and conduct spectroscopic measurements and time-domain measurements on single qubits. Later, we will evaluate two-qubit gates and then move forward with a multi-qubit, error-corrected processor, with comprehensive error diagnostic and error suppression methods to optimize performance. The final goal is the experimental realization of a 50-qubit processor with error correction to demonstrate a practical superconducting architecture.

    Principal Investigator (PI) or Team Coordinator

    Christopher Wilson, Joseph Emerson, Matteo Mariantoni, David Cory

    sidebar icon sidebar icon sidebar icon sidebar icon
    Group computation icon

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Related Content

    Implementing High-fidelity Quantum Gates in Multi-level Trapped Ions

    Summary   The scalability of quantum processors is limited by current error rates for single-qubit gates. By encoding more than a single bit of information within a single ion, multi-level “qudits” offer a promising method of increasing the information density within a quantum processor, and therefore minimizing the number of gates and associated error rates. […]

    July 30, 2018

    PI: Crystal Senko

    Skip Tags benchmarking computation + 7 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Implementing High-fidelity Quantum Gates in Multi-level Trapped Ions
    A Reformulation of Quantum Game Theory
    TQT Communication

    A Reformulation of Quantum Game Theory

    Summary Classical game theory – conducted at the interface between economics and computer science – has found applications in topics ranging from networking and security to online markets. Despite over 20 years of research into connections between game theory and quantum information, we have yet to see any significant implications of quantum information when applied […]

    April 1, 2020

    PI: John Watrous

    Skip Tags communication computational complexity + 7 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to A Reformulation of Quantum Game Theory
    Repurposing potential drug candidates for the treatment of COVID-19

    Repurposing potential drug candidates for the treatment of COVID-19

    Summary The main protease (Mpro) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus disease (COVID-19), has emerged as a promising drug target. The scientific community has produced a large number of crystallographic structures of the protease, which mediates viral replication and transcription. These structures report several fragments with varied chemotypes […]

    May 6, 2020

    PI: Subha Kalyaanamoorthy

    Skip Tags biology chemistry + 11 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Repurposing potential drug candidates for the treatment of COVID-19
    Entangled States of Beams and their Applications
    TQT Sensing

    Entangled States of Beams and their Applications

    Summary   With David Cory and collaborators at the National Institute of Standards and Technology (NIST) we explore how to engineer beams of neutron or photons that carry entanglement. The degrees of freedom that can be entangled include spin (polarization), momentum, displacement, and angular momentum. These have potential applications ranging from studies of helical internal magnetic fields […]

    September 7, 2016

    PI: Dmitry Pushin

    Skip Tags chemistry grand challenge + 3 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Entangled States of Beams and their Applications

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum for Health Design Challenge
    • Quantum for Environment Design Challenge
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo