Summary
The scalability of quantum processors is limited by current error rates for single-qubit gates. By encoding more than a single bit of information within a single ion, multi-level “qudits” offer a promising method of increasing the information density within a quantum processor, and therefore minimizing the number of gates and associated error rates. In this project we seek to improve the capabilities of trapped ion quantum processors, implementing all of the basic tools required to perform quantum information processing with multi-level qudits. To-date there have been few experimental efforts directed towards this area and many of the basic operations – such as reliably distinguishing among all possible basis states in a single-shot measurement or performing deterministic entangling gates – have not yet been demonstrated. In this project, we will design and construct a laser system that will be used to perform coherent operations, and to implement and characterize high-fidelity single-qudit gates. These will form some of the world’s first laboratory demonstrations of quantum computing with multi-level qudits. Because our approach will allow more information to be encoded with fewer qudits, and folds some of the complexity of a given algorithm into the non-entangling operations, there is reason to believe that the use of multi-level qudits could bring dramatic improvements to the scalability of quantum processors.
Related Content

Structured Light Applications in Vision Science
Eye diseases such as macular degeneration can have a devastating impact on quality of life. Early detection and treatment are thus crucial for preventing irreversible vision loss. A previous study found that the human eye can detect differences in ‘structured’ light beams. Such light beams are composed of a coherent superposition of differently polarized planar […]
April 24, 2023

Entangled States of Beams and their Applications
Summary With David Cory and collaborators at the National Institute of Standards and Technology (NIST) we explore how to engineer beams of neutron or photons that carry entanglement. The degrees of freedom that can be entangled include spin (polarization), momentum, displacement, and angular momentum. These have potential applications ranging from studies of helical internal magnetic fields […]
September 7, 2016
Folk Understanding of Quantum Physics
Summary It is often said that quantum concepts are counterintuitive. However, quantum concepts may not be equally counterintuitive to people from all cultural backgrounds. As cultural psychologists have discovered, culture fundamentally shapes the way people make sense of the world. In particular, the last few decades of research have documented cultural differences in appreciation of […]
March 24, 2021

Magnetoelectric Coupling in New Composite Multiferroic Nanostructures as High-Density Quantum Multistate Memory Elements
Summary Magnetoelectric multiferroics are materials that exhibit correlated ferroelectric and ferromagnetic properties (i.e., a magnetoelectric effect). The resulting ability of these materials to simultaneously store data in electric polarization and magnetic moment could increase data storage density and data processing speed while reducing energy consumption. This project aims to design and fabricate new composite multiferroic […]
February 1, 2023