Summary
Topological qubits offer a novel pathway to scalable quantum computing by simultaneously allowing for ease of coupling between qubits and strong decoupling of qubits from noise and dissipation. The most promising direction explores the topologically induced protection of theoretically predicted exotic quasiparticles, the so-called Majorana Zero Modes or MZMs. To-date MZMs, which follow non-Abelian statistics, have largely evaded unambiguous experimental demonstration. This project aims to provide a suitable material platform to realize MZMs. To achieve this, we develop a high-mobility semiconductor layer structure in order to observe the experimental signature of Majorana fermions on a platform that can be readily scaled and advanced to logical qubit devices. This project utilizes the molecular beam epitaxy (MBE) facility, the Quantum NanoFab and Characterization facility, and cryogenic measurement facilities available at UW to produce high-mobility material and turn epitaxial heterostructures into working devices. Furthermore, we collaborate with Jonathan Baugh’s group on quantum transport, fabrication and cryogenic measurements. This project advances all stages of developing a device based on topological qubits: design, MBE growth, fabrication and final testing. We would like to demonstrate and use the non-Abelian statistics of Majorana fermions to form topological qubits in epitaxial heterostructures and produce devices that could in the future lead to topologically protected quantum computers.

Figure 1. Concept visualization of two bound Majorana Zero Modes (MZM, in red), under a superconductor island (grey), all within a gate-defined quantum wire. The semi-transparent blue layer represents the host two-dimensional electron gas in the semiconductor single crystal.
Related Content

Engineering and Characterizing Programmable Interaction Graphs in a Trapped Ion Quantum Simulator
Summary Quantum simulators have the potential to bring unprecedented capabilities in areas such as the discovery of new materials and drugs. Engineering precise and programmable interaction graphs between qubits or spins forms the backbone of simulator applications. The trapped ion system is unique in that the interaction graph between qubits can be programmed, in […]
July 24, 2018

Quantum State Tomography with Machine Learning
Summary An important challenge in building a quantum computer is quantifying the level of control obtained in the preparation of a quantum state. The state of a quantum device is characterized from experimental measurements, using a procedure known as tomography. Exact tomography requires a vast amount of computer resources, making it prohibitive for quantum […]
June 6, 2018

Quantum Material Multilayer Photonic Devices and Network
Summary Realizing highly integrated quantum photonic devices on a chip can enable new opportunities for photonic quantum computation. In this project, we explore heterostructures of stacked two-dimensional (2D) materials, such transition metal dichalcogenides (TMDC) or graphene, combined with optical microcavities as a platform for such devices. 2D materials are extremely thin and flexible, and have […]
December 12, 2019