Summary
Topological qubits offer a novel pathway to scalable quantum computing by simultaneously allowing for ease of coupling between qubits and strong decoupling of qubits from noise and dissipation. The most promising direction explores the topologically induced protection of theoretically predicted exotic quasiparticles, the so-called Majorana Zero Modes or MZMs. To-date MZMs, which follow non-Abelian statistics, have largely evaded unambiguous experimental demonstration. This project aims to provide a suitable material platform to realize MZMs. To achieve this, we develop a high-mobility semiconductor layer structure in order to observe the experimental signature of Majorana fermions on a platform that can be readily scaled and advanced to logical qubit devices. This project utilizes the molecular beam epitaxy (MBE) facility, the Quantum NanoFab and Characterization facility, and cryogenic measurement facilities available at UW to produce high-mobility material and turn epitaxial heterostructures into working devices. Furthermore, we collaborate with Jonathan Baugh’s group on quantum transport, fabrication and cryogenic measurements. This project advances all stages of developing a device based on topological qubits: design, MBE growth, fabrication and final testing. We would like to demonstrate and use the non-Abelian statistics of Majorana fermions to form topological qubits in epitaxial heterostructures and produce devices that could in the future lead to topologically protected quantum computers.

Figure 1. Concept visualization of two bound Majorana Zero Modes (MZM, in red), under a superconductor island (grey), all within a gate-defined quantum wire. The semi-transparent blue layer represents the host two-dimensional electron gas in the semiconductor single crystal.
Related Content
QuantumIon: an open-access quantum computing platform
Summary Trapped ions are one of the most advanced technologies for quantum computing, offering multi-qubit control in a universal quantum computing architecture and the ability to perform calculations with unprecedented precision. In this project we construct a shared trapped-ion quantum computing platform, QuantumIon, that will enable a broader and interdisciplinary scientific community to access an […]
September 9, 2019

Novel High-Speed Receiver for Quantum Communication and Sensing
Summary An essential aspect of a quantum channel is the detection and analysis of quantum signals in the form of photons. For most free-space applications, the photons are polarization encoded, e.g. by assigning the ‘0’ to horizontally polarized photons and ‘1’ to vertically polarized photons. However, where the geometric reference is not constant at all […]
January 1, 2019

Plasmon Control of Quantum States in Semiconductor Nanocrystals
Summary Thanks to the light-induced collective oscillations of free charges at the boundary between a conducting material and a dielectric, known as surface plasmon resonance, metallic nanostructures can exhibit strong light absorption and scattering. The sensitivity of these resonances to the local environment and shape of the metallic structures allows them to be used, […]
March 21, 2018

Rydberg Atom Array Quantum Simulator
Summary Quantum simulators enable probing the static and dynamic properties of correlated quantum many-body systems that would otherwise be numerically inaccessible using classical simulators. We are developing quantum simulators based on arrays of neutral atoms excited to Rydberg states. Such Rydberg atom arrays are advantageous for simulating the dynamics of interacting spin systems (Ising spin […]
February 27, 2020