TQT Transformative Quantum Technologies logo
  • En
  • Fr
Get Connected
TQT Transformative Quantum Technologies logo
Get Connected

"Find People, Projects, etc."

Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
job
publications
equipment
media
research
projects
people
events
labs
Filter by Categories
Committee
Leadership
Science
Staff
  • Home
  • Research
  • Opportunities
  • Events
  • About
  • Get Connected
  • Institute for Quantum Computing

    Hybrid Quantum Repeater based on Atomic Quantum Memories and Telecom Wavelength Entangled Photon-Pairs Generated from Semiconductor Nanowires

    Go Back Back

    More Topics

    communication electrical & computer engineering entangled photons grand challenge memory nanowire nodes quantum dots quantum repeater silicon

    Summary

     

    Losses in physical channels, such as optical fibres, limit existing quantum communication systems to modest distance ranges. Since amplification of quantum signals is fundamentally not possible,  we look to extend the range and functionality of these quantum channels by adding quantum memory nodes that can daisy-chain multiple lengths of quantum channels through entanglement and thus extend the communication distance — an approach known as ‘quantum repeater’. Quantum repeaters are by necessity hybrid devices, as they connect flying qubits (photons) to small processors for error correction and privacy amplification. In this project we develop a two-node proof-of-principle hybrid quantum repeater system. We generate entangled photon pairs from quantum dots embedded in semiconductor nanowire and store them in atomic quantum memories following a frequency up-conversion. We expect this will enable quantum key distribution over long distances at rates exceeding those possible through a direct link. The photon-pair sources, the frequency converters, as well as the quantum memories will be implemented in compact on-chip platforms. This novel approach combines the advantages available from a deterministic and tunable solid-state source of bright entangled photon pairs with the potential for high-efficiency long-lived quantum memory that is achievable with laser cooled atoms. The ultimate goal is to achieve a working pair of quantum repeater nodes at practically relevant wavelengths that would lead to useful rates for long-distance quantum key distribution.

     

    Figure 1. The two quantum dots (red triangles embedded in semiconductor nanowires) produce pairs of entangled photons. One photon from each pair is stored in an atomic ensemble memory, while the other photon is sent into a coincidence measurement setup, which generates entanglement between the two atomic ensembles.

    Principal Investigator (PI) or Team Coordinator

    Michal Bajcsy & Michael Reimer

    sidebar icon sidebar icon
    Group communication icon

    Share

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn

    Related Content

    Photonic Quantum Processor
    TQT Computation

    Photonic Quantum Processor

    Photonic quantum processors based on integrated quantum photonic circuits require entangled photon pairs to perform quantum computations. However, current state-of-the-art technologies utilize probabilistic entangled photon sources with limited pair-extraction efficiencies, negatively affecting the computation speed. This project aims to boost the speed of on-chip quantum operations by using bright, on-demand entangled photon sources with an […]

    April 24, 2023

    PI: Michael Reimer

    Skip Tags computation entanglement + 5 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Photonic Quantum Processor
    Novel Infrared Camera Based on Quantum Sensors for Biomedical Applications
    TQT Sensing

    Novel Infrared Camera Based on Quantum Sensors for Biomedical Applications

    Summary  In this project we develop a novel infrared camera with low noise and high detection efficiency for biomedical applications of optical coherence tomography (OCT) using quantum materials. OCT is a technique used to image the back of the eye and allow for the diagnosis of detrimental eye conditions, for e.g., macular degeneration, diabetic retinopathy […]

    March 13, 2019

    PI: Michael Reimer

    Skip Tags camera CMOS + 10 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Novel Infrared Camera Based on Quantum Sensors for Biomedical Applications
    Developing Tools for Quantum Characterization and Validation
    TQT Computation

    Developing Tools for Quantum Characterization and Validation

    Summary   Coherence is essential for quantum computation; yet it introduces a unique sensitivity to any imperfections in hardware design, control systems, and the operating environment. Overcoming these sensitivities requires a hierarchy of strategies, ranging from optimization of the hardware architecture to software solutions including quantum error correction. Randomized Benchmarking Protocols are an important family of […]

    October 3, 2017

    PI: Joseph Emerson

    Skip Tags applied math computation + 3 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Developing Tools for Quantum Characterization and Validation
    Development of Terahertz Polariton Lasers

    Development of Terahertz Polariton Lasers

    Theoretical and experimental results show that the polariton lasing mechanism is a promising basis for a compact, efficient source of terahertz radiation.

    July 1, 2017

    PI: Zbigniew Wasilewski

    Skip Tags electrical & computer engineering new ideas + 2 Additional

    • Share on Twitter
    • Share on Facebook
    • Share on LinkedIn
    • Go to Development of Terahertz Polariton Lasers

    Connect with Us

    Join us at the frontier of quantum technology development. Request a visit, explore opportunities, and stay informed.

    Get Connected
    TQT Logo
    First Canada Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    TQT Logo
    • Home
    • Research
    • Opportunities
    • Events
    • About
    • Get Connected
    • Institute for Quantum Computing
    • twitter icon
    • facebook icon
    • youtube icon
    First Canada Logo
    TQT Logo
    • twitter icon
    • facebook icon
    • youtube icon
    • Research
    • Overview
    • Updates
    • Projects
    • Publications
    • Labs
    • Quantum Innovation Cycle
    • Opportunities
    • Overview
    • Quantum for Health Design Challenge
    • Quantum for Environment Design Challenge
    • Quantum Seed
    • Technology Development
    • Open Positions
    • Events
    • All Events
    • About
    • Overview
    • People
    • Media
    • Contact
    First Canada Logo