Summary
The superconducting quantum computing architecture has seen rapid improvements over the last two decades. However, the coherence time of superconducting qubits is limited by unknown noise sources presumably existent at the interface between the insulator and the superconducting film. Carbon nanotubes (CNTs) are a promising material for use in Josephson-Junctions (JJs) given their unique properties, such as high electrical conductivity, pristine surface, inherent nanoscale dimension, and silicon-compatible processing. In this project, we are building gate-controlled JJs composed of CNT thin films (down-to-monolayer) positioned between two superconducting electrodes to act as a promising superconducting qubit for quantum computers. Aside from gate-controllability, this approach offers superb interface engineering capability, small integration footprint, and high-temperature operation. We expect the CNT film – JJ superconducting qubit will achieve superior performance relative to current state-of-the-art JJs and enable the development of scalable superconducting computation with extensions to arrays of CNT-JJs coupled to microwave and optical photon-waveguides.
Related Content
Applications of Neutron Interferometry and Structured Neutron Beams
Summary Neutrons are a powerful probe of matter and physics due to their Angstrom size wavelengths, electric neutrality and relatively large mass. In this project, we develop quantum sensors that exploit these attributes to increases the precision of measurements of fundamental forces and materials structure. With David Cory, Alexander Cronin of the University of Arizona, […]
July 31, 2018
Composite Superconductors for Improved Quantum Coherence
Summary Conventional superconductors have trouble performing well in magnetic fields required for electron spin resonance (ESR) – based quantum information processing applications. We can, however, use proximity engineering to select desired properties from different materials and combine them for improved superconducting performance in magnetic fields — an improvement that would have strong implications for […]
December 12, 2018
Quantum Light Sources Based on Deterministic Photon Subtraction
Summary This project develops new sources of light that utilize quantum entanglement to enhance imaging resolution and detection. We aim to go beyond simple photon pairs and advance our understanding and control of new quantum states of light. Our approach uses deterministic single-photon subtraction (removing of a specific photon from a pulse of light) […]
July 13, 2018
Quantum Computational Resources in the Presence of Symmetry
Summary Fault-tolerance is essential to the performance of quantum technologies, but known schemes are extremely resource intensive. Thus, improving existing schemes or inventing new schemes is of central importance. This joint project is based on the realization that fault-tolerance schemes make use of symmetries in fundamental ways, and that studying the problem of fault tolerance […]
March 13, 2019